mvebu_a3700_spi.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (C) 2015 Marvell International Ltd.
  4. *
  5. * Copyright (C) 2016 Stefan Roese <sr@denx.de>
  6. */
  7. #include <common.h>
  8. #include <dm.h>
  9. #include <malloc.h>
  10. #include <spi.h>
  11. #include <wait_bit.h>
  12. #include <asm/io.h>
  13. DECLARE_GLOBAL_DATA_PTR;
  14. #define MVEBU_SPI_A3700_XFER_RDY BIT(1)
  15. #define MVEBU_SPI_A3700_FIFO_FLUSH BIT(9)
  16. #define MVEBU_SPI_A3700_BYTE_LEN BIT(5)
  17. #define MVEBU_SPI_A3700_CLK_PHA BIT(6)
  18. #define MVEBU_SPI_A3700_CLK_POL BIT(7)
  19. #define MVEBU_SPI_A3700_FIFO_EN BIT(17)
  20. #define MVEBU_SPI_A3700_SPI_EN_0 BIT(16)
  21. #define MVEBU_SPI_A3700_CLK_PRESCALE_BIT 0
  22. #define MVEBU_SPI_A3700_CLK_PRESCALE_MASK \
  23. (0x1f << MVEBU_SPI_A3700_CLK_PRESCALE_BIT)
  24. /* SPI registers */
  25. struct spi_reg {
  26. u32 ctrl; /* 0x10600 */
  27. u32 cfg; /* 0x10604 */
  28. u32 dout; /* 0x10608 */
  29. u32 din; /* 0x1060c */
  30. };
  31. struct mvebu_spi_platdata {
  32. struct spi_reg *spireg;
  33. unsigned int frequency;
  34. unsigned int clock;
  35. };
  36. static void spi_cs_activate(struct spi_reg *reg, int cs)
  37. {
  38. setbits_le32(&reg->ctrl, MVEBU_SPI_A3700_SPI_EN_0 << cs);
  39. }
  40. static void spi_cs_deactivate(struct spi_reg *reg, int cs)
  41. {
  42. clrbits_le32(&reg->ctrl, MVEBU_SPI_A3700_SPI_EN_0 << cs);
  43. }
  44. /**
  45. * spi_legacy_shift_byte() - triggers the real SPI transfer
  46. * @bytelen: Indicate how many bytes to transfer.
  47. * @dout: Buffer address of what to send.
  48. * @din: Buffer address of where to receive.
  49. *
  50. * This function triggers the real SPI transfer in legacy mode. It
  51. * will shift out char buffer from @dout, and shift in char buffer to
  52. * @din, if necessary.
  53. *
  54. * This function assumes that only one byte is shifted at one time.
  55. * However, it is not its responisbility to set the transfer type to
  56. * one-byte. Also, it does not guarantee that it will work if transfer
  57. * type becomes two-byte. See spi_set_legacy() for details.
  58. *
  59. * In legacy mode, simply write to the SPI_DOUT register will trigger
  60. * the transfer.
  61. *
  62. * If @dout == NULL, which means no actual data needs to be sent out,
  63. * then the function will shift out 0x00 in order to shift in data.
  64. * The XFER_RDY flag is checked every time before accessing SPI_DOUT
  65. * and SPI_DIN register.
  66. *
  67. * The number of transfers to be triggerred is decided by @bytelen.
  68. *
  69. * Return: 0 - cool
  70. * -ETIMEDOUT - XFER_RDY flag timeout
  71. */
  72. static int spi_legacy_shift_byte(struct spi_reg *reg, unsigned int bytelen,
  73. const void *dout, void *din)
  74. {
  75. const u8 *dout_8;
  76. u8 *din_8;
  77. int ret;
  78. /* Use 0x00 as dummy dout */
  79. const u8 dummy_dout = 0x0;
  80. u32 pending_dout = 0x0;
  81. /* dout_8: pointer of current dout */
  82. dout_8 = dout;
  83. /* din_8: pointer of current din */
  84. din_8 = din;
  85. while (bytelen) {
  86. ret = wait_for_bit_le32(&reg->ctrl,
  87. MVEBU_SPI_A3700_XFER_RDY,
  88. true,100, false);
  89. if (ret)
  90. return ret;
  91. if (dout)
  92. pending_dout = (u32)*dout_8;
  93. else
  94. pending_dout = (u32)dummy_dout;
  95. /* Trigger the xfer */
  96. writel(pending_dout, &reg->dout);
  97. if (din) {
  98. ret = wait_for_bit_le32(&reg->ctrl,
  99. MVEBU_SPI_A3700_XFER_RDY,
  100. true, 100, false);
  101. if (ret)
  102. return ret;
  103. /* Read what is transferred in */
  104. *din_8 = (u8)readl(&reg->din);
  105. }
  106. /* Don't increment the current pointer if NULL */
  107. if (dout)
  108. dout_8++;
  109. if (din)
  110. din_8++;
  111. bytelen--;
  112. }
  113. return 0;
  114. }
  115. static int mvebu_spi_xfer(struct udevice *dev, unsigned int bitlen,
  116. const void *dout, void *din, unsigned long flags)
  117. {
  118. struct udevice *bus = dev->parent;
  119. struct mvebu_spi_platdata *plat = dev_get_platdata(bus);
  120. struct spi_reg *reg = plat->spireg;
  121. unsigned int bytelen;
  122. int ret;
  123. bytelen = bitlen / 8;
  124. if (dout && din)
  125. debug("This is a duplex transfer.\n");
  126. /* Activate CS */
  127. if (flags & SPI_XFER_BEGIN) {
  128. debug("SPI: activate cs.\n");
  129. spi_cs_activate(reg, spi_chip_select(dev));
  130. }
  131. /* Send and/or receive */
  132. if (dout || din) {
  133. ret = spi_legacy_shift_byte(reg, bytelen, dout, din);
  134. if (ret)
  135. return ret;
  136. }
  137. /* Deactivate CS */
  138. if (flags & SPI_XFER_END) {
  139. ret = wait_for_bit_le32(&reg->ctrl,
  140. MVEBU_SPI_A3700_XFER_RDY,
  141. true, 100, false);
  142. if (ret)
  143. return ret;
  144. debug("SPI: deactivate cs.\n");
  145. spi_cs_deactivate(reg, spi_chip_select(dev));
  146. }
  147. return 0;
  148. }
  149. static int mvebu_spi_set_speed(struct udevice *bus, uint hz)
  150. {
  151. struct mvebu_spi_platdata *plat = dev_get_platdata(bus);
  152. struct spi_reg *reg = plat->spireg;
  153. u32 data;
  154. data = readl(&reg->cfg);
  155. /* Set Prescaler */
  156. data &= ~MVEBU_SPI_A3700_CLK_PRESCALE_MASK;
  157. /* Calculate Prescaler = (spi_input_freq / spi_max_freq) */
  158. if (hz > plat->frequency)
  159. hz = plat->frequency;
  160. data |= plat->clock / hz;
  161. writel(data, &reg->cfg);
  162. return 0;
  163. }
  164. static int mvebu_spi_set_mode(struct udevice *bus, uint mode)
  165. {
  166. struct mvebu_spi_platdata *plat = dev_get_platdata(bus);
  167. struct spi_reg *reg = plat->spireg;
  168. /*
  169. * Set SPI polarity
  170. * 0: Serial interface clock is low when inactive
  171. * 1: Serial interface clock is high when inactive
  172. */
  173. if (mode & SPI_CPOL)
  174. setbits_le32(&reg->cfg, MVEBU_SPI_A3700_CLK_POL);
  175. else
  176. clrbits_le32(&reg->cfg, MVEBU_SPI_A3700_CLK_POL);
  177. if (mode & SPI_CPHA)
  178. setbits_le32(&reg->cfg, MVEBU_SPI_A3700_CLK_PHA);
  179. else
  180. clrbits_le32(&reg->cfg, MVEBU_SPI_A3700_CLK_PHA);
  181. return 0;
  182. }
  183. static int mvebu_spi_probe(struct udevice *bus)
  184. {
  185. struct mvebu_spi_platdata *plat = dev_get_platdata(bus);
  186. struct spi_reg *reg = plat->spireg;
  187. u32 data;
  188. int ret;
  189. /*
  190. * Settings SPI controller to be working in legacy mode, which
  191. * means use only DO pin (I/O 1) for Data Out, and DI pin (I/O 0)
  192. * for Data In.
  193. */
  194. /* Flush read/write FIFO */
  195. data = readl(&reg->cfg);
  196. writel(data | MVEBU_SPI_A3700_FIFO_FLUSH, &reg->cfg);
  197. ret = wait_for_bit_le32(&reg->cfg, MVEBU_SPI_A3700_FIFO_FLUSH,
  198. false, 1000, false);
  199. if (ret)
  200. return ret;
  201. /* Disable FIFO mode */
  202. data &= ~MVEBU_SPI_A3700_FIFO_EN;
  203. /* Always shift 1 byte at a time */
  204. data &= ~MVEBU_SPI_A3700_BYTE_LEN;
  205. writel(data, &reg->cfg);
  206. return 0;
  207. }
  208. static int mvebu_spi_ofdata_to_platdata(struct udevice *bus)
  209. {
  210. struct mvebu_spi_platdata *plat = dev_get_platdata(bus);
  211. plat->spireg = (struct spi_reg *)devfdt_get_addr(bus);
  212. /*
  213. * FIXME
  214. * Right now, mvebu does not have a clock infrastructure in U-Boot
  215. * which should be used to query the input clock to the SPI
  216. * controller. Once this clock driver is integrated into U-Boot
  217. * it should be used to read the input clock and the DT property
  218. * can be removed.
  219. */
  220. plat->clock = fdtdec_get_int(gd->fdt_blob, dev_of_offset(bus),
  221. "clock-frequency", 160000);
  222. plat->frequency = fdtdec_get_int(gd->fdt_blob, dev_of_offset(bus),
  223. "spi-max-frequency", 40000);
  224. return 0;
  225. }
  226. static const struct dm_spi_ops mvebu_spi_ops = {
  227. .xfer = mvebu_spi_xfer,
  228. .set_speed = mvebu_spi_set_speed,
  229. .set_mode = mvebu_spi_set_mode,
  230. /*
  231. * cs_info is not needed, since we require all chip selects to be
  232. * in the device tree explicitly
  233. */
  234. };
  235. static const struct udevice_id mvebu_spi_ids[] = {
  236. { .compatible = "marvell,armada-3700-spi" },
  237. { }
  238. };
  239. U_BOOT_DRIVER(mvebu_spi) = {
  240. .name = "mvebu_spi",
  241. .id = UCLASS_SPI,
  242. .of_match = mvebu_spi_ids,
  243. .ops = &mvebu_spi_ops,
  244. .ofdata_to_platdata = mvebu_spi_ofdata_to_platdata,
  245. .platdata_auto_alloc_size = sizeof(struct mvebu_spi_platdata),
  246. .probe = mvebu_spi_probe,
  247. };