omap_hsmmc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. * (C) Copyright 2008
  3. * Texas Instruments, <www.ti.com>
  4. * Sukumar Ghorai <s-ghorai@ti.com>
  5. *
  6. * See file CREDITS for list of people who contributed to this
  7. * project.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation's version 2 of
  12. * the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  22. * MA 02111-1307 USA
  23. */
  24. #include <config.h>
  25. #include <common.h>
  26. #include <mmc.h>
  27. #include <part.h>
  28. #include <i2c.h>
  29. #include <twl4030.h>
  30. #include <twl6030.h>
  31. #include <palmas.h>
  32. #include <asm/gpio.h>
  33. #include <asm/io.h>
  34. #include <asm/arch/mmc_host_def.h>
  35. #include <asm/arch/sys_proto.h>
  36. /* common definitions for all OMAPs */
  37. #define SYSCTL_SRC (1 << 25)
  38. #define SYSCTL_SRD (1 << 26)
  39. struct omap_hsmmc_data {
  40. struct hsmmc *base_addr;
  41. int cd_gpio;
  42. int wp_gpio;
  43. };
  44. /* If we fail after 1 second wait, something is really bad */
  45. #define MAX_RETRY_MS 1000
  46. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
  47. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  48. unsigned int siz);
  49. static struct mmc hsmmc_dev[3];
  50. static struct omap_hsmmc_data hsmmc_dev_data[3];
  51. #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
  52. (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
  53. static int omap_mmc_setup_gpio_in(int gpio, const char *label)
  54. {
  55. if (!gpio_is_valid(gpio))
  56. return -1;
  57. if (gpio_request(gpio, label) < 0)
  58. return -1;
  59. if (gpio_direction_input(gpio) < 0)
  60. return -1;
  61. return gpio;
  62. }
  63. static int omap_mmc_getcd(struct mmc *mmc)
  64. {
  65. int cd_gpio = ((struct omap_hsmmc_data *)mmc->priv)->cd_gpio;
  66. return gpio_get_value(cd_gpio);
  67. }
  68. static int omap_mmc_getwp(struct mmc *mmc)
  69. {
  70. int wp_gpio = ((struct omap_hsmmc_data *)mmc->priv)->wp_gpio;
  71. return gpio_get_value(wp_gpio);
  72. }
  73. #else
  74. static inline int omap_mmc_setup_gpio_in(int gpio, const char *label)
  75. {
  76. return -1;
  77. }
  78. #define omap_mmc_getcd NULL
  79. #define omap_mmc_getwp NULL
  80. #endif
  81. #if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER)
  82. static void omap4_vmmc_pbias_config(struct mmc *mmc)
  83. {
  84. u32 value = 0;
  85. value = readl((*ctrl)->control_pbiaslite);
  86. value &= ~(MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ);
  87. writel(value, (*ctrl)->control_pbiaslite);
  88. /* set VMMC to 3V */
  89. twl6030_power_mmc_init();
  90. value = readl((*ctrl)->control_pbiaslite);
  91. value |= MMC1_PBIASLITE_VMODE | MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ;
  92. writel(value, (*ctrl)->control_pbiaslite);
  93. }
  94. #endif
  95. #if defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER)
  96. static void omap5_pbias_config(struct mmc *mmc)
  97. {
  98. u32 value = 0;
  99. value = readl((*ctrl)->control_pbias);
  100. value &= ~SDCARD_PWRDNZ;
  101. writel(value, (*ctrl)->control_pbias);
  102. udelay(10); /* wait 10 us */
  103. value &= ~SDCARD_BIAS_PWRDNZ;
  104. writel(value, (*ctrl)->control_pbias);
  105. palmas_mmc1_poweron_ldo();
  106. value = readl((*ctrl)->control_pbias);
  107. value |= SDCARD_BIAS_PWRDNZ;
  108. writel(value, (*ctrl)->control_pbias);
  109. udelay(150); /* wait 150 us */
  110. value |= SDCARD_PWRDNZ;
  111. writel(value, (*ctrl)->control_pbias);
  112. udelay(150); /* wait 150 us */
  113. }
  114. #endif
  115. unsigned char mmc_board_init(struct mmc *mmc)
  116. {
  117. #if defined(CONFIG_OMAP34XX)
  118. t2_t *t2_base = (t2_t *)T2_BASE;
  119. struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
  120. u32 pbias_lite;
  121. pbias_lite = readl(&t2_base->pbias_lite);
  122. pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
  123. writel(pbias_lite, &t2_base->pbias_lite);
  124. #endif
  125. #if defined(CONFIG_TWL4030_POWER)
  126. twl4030_power_mmc_init();
  127. mdelay(100); /* ramp-up delay from Linux code */
  128. #endif
  129. #if defined(CONFIG_OMAP34XX)
  130. writel(pbias_lite | PBIASLITEPWRDNZ1 |
  131. PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
  132. &t2_base->pbias_lite);
  133. writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
  134. &t2_base->devconf0);
  135. writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
  136. &t2_base->devconf1);
  137. /* Change from default of 52MHz to 26MHz if necessary */
  138. if (!(mmc->host_caps & MMC_MODE_HS_52MHz))
  139. writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
  140. &t2_base->ctl_prog_io1);
  141. writel(readl(&prcm_base->fclken1_core) |
  142. EN_MMC1 | EN_MMC2 | EN_MMC3,
  143. &prcm_base->fclken1_core);
  144. writel(readl(&prcm_base->iclken1_core) |
  145. EN_MMC1 | EN_MMC2 | EN_MMC3,
  146. &prcm_base->iclken1_core);
  147. #endif
  148. #if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER)
  149. /* PBIAS config needed for MMC1 only */
  150. if (mmc->block_dev.dev == 0)
  151. omap4_vmmc_pbias_config(mmc);
  152. #endif
  153. #if defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER)
  154. if (mmc->block_dev.dev == 0)
  155. omap5_pbias_config(mmc);
  156. #endif
  157. return 0;
  158. }
  159. void mmc_init_stream(struct hsmmc *mmc_base)
  160. {
  161. ulong start;
  162. writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
  163. writel(MMC_CMD0, &mmc_base->cmd);
  164. start = get_timer(0);
  165. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  166. if (get_timer(0) - start > MAX_RETRY_MS) {
  167. printf("%s: timedout waiting for cc!\n", __func__);
  168. return;
  169. }
  170. }
  171. writel(CC_MASK, &mmc_base->stat)
  172. ;
  173. writel(MMC_CMD0, &mmc_base->cmd)
  174. ;
  175. start = get_timer(0);
  176. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  177. if (get_timer(0) - start > MAX_RETRY_MS) {
  178. printf("%s: timedout waiting for cc2!\n", __func__);
  179. return;
  180. }
  181. }
  182. writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
  183. }
  184. static int mmc_init_setup(struct mmc *mmc)
  185. {
  186. struct hsmmc *mmc_base;
  187. unsigned int reg_val;
  188. unsigned int dsor;
  189. ulong start;
  190. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  191. mmc_board_init(mmc);
  192. writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
  193. &mmc_base->sysconfig);
  194. start = get_timer(0);
  195. while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
  196. if (get_timer(0) - start > MAX_RETRY_MS) {
  197. printf("%s: timedout waiting for cc2!\n", __func__);
  198. return TIMEOUT;
  199. }
  200. }
  201. writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
  202. start = get_timer(0);
  203. while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
  204. if (get_timer(0) - start > MAX_RETRY_MS) {
  205. printf("%s: timedout waiting for softresetall!\n",
  206. __func__);
  207. return TIMEOUT;
  208. }
  209. }
  210. writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
  211. writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
  212. &mmc_base->capa);
  213. reg_val = readl(&mmc_base->con) & RESERVED_MASK;
  214. writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
  215. MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
  216. HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
  217. dsor = 240;
  218. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
  219. (ICE_STOP | DTO_15THDTO | CEN_DISABLE));
  220. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  221. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  222. start = get_timer(0);
  223. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  224. if (get_timer(0) - start > MAX_RETRY_MS) {
  225. printf("%s: timedout waiting for ics!\n", __func__);
  226. return TIMEOUT;
  227. }
  228. }
  229. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  230. writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
  231. writel(IE_BADA | IE_CERR | IE_DEB | IE_DCRC | IE_DTO | IE_CIE |
  232. IE_CEB | IE_CCRC | IE_CTO | IE_BRR | IE_BWR | IE_TC | IE_CC,
  233. &mmc_base->ie);
  234. mmc_init_stream(mmc_base);
  235. return 0;
  236. }
  237. /*
  238. * MMC controller internal finite state machine reset
  239. *
  240. * Used to reset command or data internal state machines, using respectively
  241. * SRC or SRD bit of SYSCTL register
  242. */
  243. static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
  244. {
  245. ulong start;
  246. mmc_reg_out(&mmc_base->sysctl, bit, bit);
  247. /*
  248. * CMD(DAT) lines reset procedures are slightly different
  249. * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
  250. * According to OMAP3 TRM:
  251. * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
  252. * returns to 0x0.
  253. * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
  254. * procedure steps must be as follows:
  255. * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
  256. * MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
  257. * 2. Poll the SRC(SRD) bit until it is set to 0x1.
  258. * 3. Wait until the SRC (SRD) bit returns to 0x0
  259. * (reset procedure is completed).
  260. */
  261. #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
  262. defined(CONFIG_AM33XX)
  263. if (!(readl(&mmc_base->sysctl) & bit)) {
  264. start = get_timer(0);
  265. while (!(readl(&mmc_base->sysctl) & bit)) {
  266. if (get_timer(0) - start > MAX_RETRY_MS)
  267. return;
  268. }
  269. }
  270. #endif
  271. start = get_timer(0);
  272. while ((readl(&mmc_base->sysctl) & bit) != 0) {
  273. if (get_timer(0) - start > MAX_RETRY_MS) {
  274. printf("%s: timedout waiting for sysctl %x to clear\n",
  275. __func__, bit);
  276. return;
  277. }
  278. }
  279. }
  280. static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
  281. struct mmc_data *data)
  282. {
  283. struct hsmmc *mmc_base;
  284. unsigned int flags, mmc_stat;
  285. ulong start;
  286. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  287. start = get_timer(0);
  288. while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
  289. if (get_timer(0) - start > MAX_RETRY_MS) {
  290. printf("%s: timedout waiting on cmd inhibit to clear\n",
  291. __func__);
  292. return TIMEOUT;
  293. }
  294. }
  295. writel(0xFFFFFFFF, &mmc_base->stat);
  296. start = get_timer(0);
  297. while (readl(&mmc_base->stat)) {
  298. if (get_timer(0) - start > MAX_RETRY_MS) {
  299. printf("%s: timedout waiting for STAT (%x) to clear\n",
  300. __func__, readl(&mmc_base->stat));
  301. return TIMEOUT;
  302. }
  303. }
  304. /*
  305. * CMDREG
  306. * CMDIDX[13:8] : Command index
  307. * DATAPRNT[5] : Data Present Select
  308. * ENCMDIDX[4] : Command Index Check Enable
  309. * ENCMDCRC[3] : Command CRC Check Enable
  310. * RSPTYP[1:0]
  311. * 00 = No Response
  312. * 01 = Length 136
  313. * 10 = Length 48
  314. * 11 = Length 48 Check busy after response
  315. */
  316. /* Delay added before checking the status of frq change
  317. * retry not supported by mmc.c(core file)
  318. */
  319. if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
  320. udelay(50000); /* wait 50 ms */
  321. if (!(cmd->resp_type & MMC_RSP_PRESENT))
  322. flags = 0;
  323. else if (cmd->resp_type & MMC_RSP_136)
  324. flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
  325. else if (cmd->resp_type & MMC_RSP_BUSY)
  326. flags = RSP_TYPE_LGHT48B;
  327. else
  328. flags = RSP_TYPE_LGHT48;
  329. /* enable default flags */
  330. flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
  331. MSBS_SGLEBLK | ACEN_DISABLE | BCE_DISABLE | DE_DISABLE);
  332. if (cmd->resp_type & MMC_RSP_CRC)
  333. flags |= CCCE_CHECK;
  334. if (cmd->resp_type & MMC_RSP_OPCODE)
  335. flags |= CICE_CHECK;
  336. if (data) {
  337. if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
  338. (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
  339. flags |= (MSBS_MULTIBLK | BCE_ENABLE);
  340. data->blocksize = 512;
  341. writel(data->blocksize | (data->blocks << 16),
  342. &mmc_base->blk);
  343. } else
  344. writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
  345. if (data->flags & MMC_DATA_READ)
  346. flags |= (DP_DATA | DDIR_READ);
  347. else
  348. flags |= (DP_DATA | DDIR_WRITE);
  349. }
  350. writel(cmd->cmdarg, &mmc_base->arg);
  351. udelay(20); /* To fix "No status update" error on eMMC */
  352. writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
  353. start = get_timer(0);
  354. do {
  355. mmc_stat = readl(&mmc_base->stat);
  356. if (get_timer(0) - start > MAX_RETRY_MS) {
  357. printf("%s : timeout: No status update\n", __func__);
  358. return TIMEOUT;
  359. }
  360. } while (!mmc_stat);
  361. if ((mmc_stat & IE_CTO) != 0) {
  362. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  363. return TIMEOUT;
  364. } else if ((mmc_stat & ERRI_MASK) != 0)
  365. return -1;
  366. if (mmc_stat & CC_MASK) {
  367. writel(CC_MASK, &mmc_base->stat);
  368. if (cmd->resp_type & MMC_RSP_PRESENT) {
  369. if (cmd->resp_type & MMC_RSP_136) {
  370. /* response type 2 */
  371. cmd->response[3] = readl(&mmc_base->rsp10);
  372. cmd->response[2] = readl(&mmc_base->rsp32);
  373. cmd->response[1] = readl(&mmc_base->rsp54);
  374. cmd->response[0] = readl(&mmc_base->rsp76);
  375. } else
  376. /* response types 1, 1b, 3, 4, 5, 6 */
  377. cmd->response[0] = readl(&mmc_base->rsp10);
  378. }
  379. }
  380. if (data && (data->flags & MMC_DATA_READ)) {
  381. mmc_read_data(mmc_base, data->dest,
  382. data->blocksize * data->blocks);
  383. } else if (data && (data->flags & MMC_DATA_WRITE)) {
  384. mmc_write_data(mmc_base, data->src,
  385. data->blocksize * data->blocks);
  386. }
  387. return 0;
  388. }
  389. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
  390. {
  391. unsigned int *output_buf = (unsigned int *)buf;
  392. unsigned int mmc_stat;
  393. unsigned int count;
  394. /*
  395. * Start Polled Read
  396. */
  397. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  398. count /= 4;
  399. while (size) {
  400. ulong start = get_timer(0);
  401. do {
  402. mmc_stat = readl(&mmc_base->stat);
  403. if (get_timer(0) - start > MAX_RETRY_MS) {
  404. printf("%s: timedout waiting for status!\n",
  405. __func__);
  406. return TIMEOUT;
  407. }
  408. } while (mmc_stat == 0);
  409. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  410. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  411. if ((mmc_stat & ERRI_MASK) != 0)
  412. return 1;
  413. if (mmc_stat & BRR_MASK) {
  414. unsigned int k;
  415. writel(readl(&mmc_base->stat) | BRR_MASK,
  416. &mmc_base->stat);
  417. for (k = 0; k < count; k++) {
  418. *output_buf = readl(&mmc_base->data);
  419. output_buf++;
  420. }
  421. size -= (count*4);
  422. }
  423. if (mmc_stat & BWR_MASK)
  424. writel(readl(&mmc_base->stat) | BWR_MASK,
  425. &mmc_base->stat);
  426. if (mmc_stat & TC_MASK) {
  427. writel(readl(&mmc_base->stat) | TC_MASK,
  428. &mmc_base->stat);
  429. break;
  430. }
  431. }
  432. return 0;
  433. }
  434. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  435. unsigned int size)
  436. {
  437. unsigned int *input_buf = (unsigned int *)buf;
  438. unsigned int mmc_stat;
  439. unsigned int count;
  440. /*
  441. * Start Polled Write
  442. */
  443. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  444. count /= 4;
  445. while (size) {
  446. ulong start = get_timer(0);
  447. do {
  448. mmc_stat = readl(&mmc_base->stat);
  449. if (get_timer(0) - start > MAX_RETRY_MS) {
  450. printf("%s: timedout waiting for status!\n",
  451. __func__);
  452. return TIMEOUT;
  453. }
  454. } while (mmc_stat == 0);
  455. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  456. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  457. if ((mmc_stat & ERRI_MASK) != 0)
  458. return 1;
  459. if (mmc_stat & BWR_MASK) {
  460. unsigned int k;
  461. writel(readl(&mmc_base->stat) | BWR_MASK,
  462. &mmc_base->stat);
  463. for (k = 0; k < count; k++) {
  464. writel(*input_buf, &mmc_base->data);
  465. input_buf++;
  466. }
  467. size -= (count*4);
  468. }
  469. if (mmc_stat & BRR_MASK)
  470. writel(readl(&mmc_base->stat) | BRR_MASK,
  471. &mmc_base->stat);
  472. if (mmc_stat & TC_MASK) {
  473. writel(readl(&mmc_base->stat) | TC_MASK,
  474. &mmc_base->stat);
  475. break;
  476. }
  477. }
  478. return 0;
  479. }
  480. static void mmc_set_ios(struct mmc *mmc)
  481. {
  482. struct hsmmc *mmc_base;
  483. unsigned int dsor = 0;
  484. ulong start;
  485. mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
  486. /* configue bus width */
  487. switch (mmc->bus_width) {
  488. case 8:
  489. writel(readl(&mmc_base->con) | DTW_8_BITMODE,
  490. &mmc_base->con);
  491. break;
  492. case 4:
  493. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  494. &mmc_base->con);
  495. writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
  496. &mmc_base->hctl);
  497. break;
  498. case 1:
  499. default:
  500. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  501. &mmc_base->con);
  502. writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
  503. &mmc_base->hctl);
  504. break;
  505. }
  506. /* configure clock with 96Mhz system clock.
  507. */
  508. if (mmc->clock != 0) {
  509. dsor = (MMC_CLOCK_REFERENCE * 1000000 / mmc->clock);
  510. if ((MMC_CLOCK_REFERENCE * 1000000) / dsor > mmc->clock)
  511. dsor++;
  512. }
  513. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
  514. (ICE_STOP | DTO_15THDTO | CEN_DISABLE));
  515. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  516. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  517. start = get_timer(0);
  518. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  519. if (get_timer(0) - start > MAX_RETRY_MS) {
  520. printf("%s: timedout waiting for ics!\n", __func__);
  521. return;
  522. }
  523. }
  524. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  525. }
  526. int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
  527. int wp_gpio)
  528. {
  529. struct mmc *mmc = &hsmmc_dev[dev_index];
  530. struct omap_hsmmc_data *priv_data = &hsmmc_dev_data[dev_index];
  531. uint host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS |
  532. MMC_MODE_HC;
  533. sprintf(mmc->name, "OMAP SD/MMC");
  534. mmc->send_cmd = mmc_send_cmd;
  535. mmc->set_ios = mmc_set_ios;
  536. mmc->init = mmc_init_setup;
  537. mmc->priv = priv_data;
  538. switch (dev_index) {
  539. case 0:
  540. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  541. break;
  542. #ifdef OMAP_HSMMC2_BASE
  543. case 1:
  544. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
  545. #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
  546. defined(CONFIG_DRA7XX)) && defined(CONFIG_HSMMC2_8BIT)
  547. /* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
  548. host_caps_val |= MMC_MODE_8BIT;
  549. #endif
  550. break;
  551. #endif
  552. #ifdef OMAP_HSMMC3_BASE
  553. case 2:
  554. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
  555. #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
  556. /* Enable 8-bit interface for eMMC on DRA7XX */
  557. host_caps_val |= MMC_MODE_8BIT;
  558. #endif
  559. break;
  560. #endif
  561. default:
  562. priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  563. return 1;
  564. }
  565. priv_data->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
  566. if (priv_data->cd_gpio != -1)
  567. mmc->getcd = omap_mmc_getcd;
  568. priv_data->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
  569. if (priv_data->wp_gpio != -1)
  570. mmc->getwp = omap_mmc_getwp;
  571. mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
  572. mmc->host_caps = host_caps_val & ~host_caps_mask;
  573. mmc->f_min = 400000;
  574. if (f_max != 0)
  575. mmc->f_max = f_max;
  576. else {
  577. if (mmc->host_caps & MMC_MODE_HS) {
  578. if (mmc->host_caps & MMC_MODE_HS_52MHz)
  579. mmc->f_max = 52000000;
  580. else
  581. mmc->f_max = 26000000;
  582. } else
  583. mmc->f_max = 20000000;
  584. }
  585. mmc->b_max = 0;
  586. #if defined(CONFIG_OMAP34XX)
  587. /*
  588. * Silicon revs 2.1 and older do not support multiblock transfers.
  589. */
  590. if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
  591. mmc->b_max = 1;
  592. #endif
  593. mmc_register(mmc);
  594. return 0;
  595. }