clock_manager_gen5.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (C) 2013-2017 Altera Corporation <www.altera.com>
  4. */
  5. #include <common.h>
  6. #include <asm/io.h>
  7. #include <dm.h>
  8. #include <asm/arch/clock_manager.h>
  9. #include <wait_bit.h>
  10. static const struct socfpga_clock_manager *clock_manager_base =
  11. (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
  12. /*
  13. * function to write the bypass register which requires a poll of the
  14. * busy bit
  15. */
  16. static void cm_write_bypass(u32 val)
  17. {
  18. writel(val, &clock_manager_base->bypass);
  19. cm_wait_for_fsm();
  20. }
  21. /* function to write the ctrl register which requires a poll of the busy bit */
  22. static void cm_write_ctrl(u32 val)
  23. {
  24. writel(val, &clock_manager_base->ctrl);
  25. cm_wait_for_fsm();
  26. }
  27. /* function to write a clock register that has phase information */
  28. static int cm_write_with_phase(u32 value, const void *reg_address, u32 mask)
  29. {
  30. int ret;
  31. /* poll until phase is zero */
  32. ret = wait_for_bit_le32(reg_address, mask, false, 20000, false);
  33. if (ret)
  34. return ret;
  35. writel(value, reg_address);
  36. return wait_for_bit_le32(reg_address, mask, false, 20000, false);
  37. }
  38. /*
  39. * Setup clocks while making no assumptions about previous state of the clocks.
  40. *
  41. * Start by being paranoid and gate all sw managed clocks
  42. * Put all plls in bypass
  43. * Put all plls VCO registers back to reset value (bandgap power down).
  44. * Put peripheral and main pll src to reset value to avoid glitch.
  45. * Delay 5 us.
  46. * Deassert bandgap power down and set numerator and denominator
  47. * Start 7 us timer.
  48. * set internal dividers
  49. * Wait for 7 us timer.
  50. * Enable plls
  51. * Set external dividers while plls are locking
  52. * Wait for pll lock
  53. * Assert/deassert outreset all.
  54. * Take all pll's out of bypass
  55. * Clear safe mode
  56. * set source main and peripheral clocks
  57. * Ungate clocks
  58. */
  59. int cm_basic_init(const struct cm_config * const cfg)
  60. {
  61. unsigned long end;
  62. int ret;
  63. /* Start by being paranoid and gate all sw managed clocks */
  64. /*
  65. * We need to disable nandclk
  66. * and then do another apb access before disabling
  67. * gatting off the rest of the periperal clocks.
  68. */
  69. writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK &
  70. readl(&clock_manager_base->per_pll.en),
  71. &clock_manager_base->per_pll.en);
  72. /* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */
  73. writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK |
  74. CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK |
  75. CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK |
  76. CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK |
  77. CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK |
  78. CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK,
  79. &clock_manager_base->main_pll.en);
  80. writel(0, &clock_manager_base->sdr_pll.en);
  81. /* now we can gate off the rest of the peripheral clocks */
  82. writel(0, &clock_manager_base->per_pll.en);
  83. /* Put all plls in bypass */
  84. cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL |
  85. CLKMGR_BYPASS_MAINPLL);
  86. /* Put all plls VCO registers back to reset value. */
  87. writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE &
  88. ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK,
  89. &clock_manager_base->main_pll.vco);
  90. writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE &
  91. ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK,
  92. &clock_manager_base->per_pll.vco);
  93. writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE &
  94. ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK,
  95. &clock_manager_base->sdr_pll.vco);
  96. /*
  97. * The clocks to the flash devices and the L4_MAIN clocks can
  98. * glitch when coming out of safe mode if their source values
  99. * are different from their reset value. So the trick it to
  100. * put them back to their reset state, and change input
  101. * after exiting safe mode but before ungating the clocks.
  102. */
  103. writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE,
  104. &clock_manager_base->per_pll.src);
  105. writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE,
  106. &clock_manager_base->main_pll.l4src);
  107. /* read back for the required 5 us delay. */
  108. readl(&clock_manager_base->main_pll.vco);
  109. readl(&clock_manager_base->per_pll.vco);
  110. readl(&clock_manager_base->sdr_pll.vco);
  111. /*
  112. * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN
  113. * with numerator and denominator.
  114. */
  115. writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco);
  116. writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco);
  117. writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco);
  118. /*
  119. * Time starts here. Must wait 7 us from
  120. * BGPWRDN_SET(0) to VCO_ENABLE_SET(1).
  121. */
  122. end = timer_get_us() + 7;
  123. /* main mpu */
  124. writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk);
  125. /* altera group mpuclk */
  126. writel(cfg->altera_grp_mpuclk, &clock_manager_base->altera.mpuclk);
  127. /* main main clock */
  128. writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk);
  129. /* main for dbg */
  130. writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk);
  131. /* main for cfgs2fuser0clk */
  132. writel(cfg->cfg2fuser0clk,
  133. &clock_manager_base->main_pll.cfgs2fuser0clk);
  134. /* Peri emac0 50 MHz default to RMII */
  135. writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk);
  136. /* Peri emac1 50 MHz default to RMII */
  137. writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk);
  138. /* Peri QSPI */
  139. writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk);
  140. writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk);
  141. /* Peri pernandsdmmcclk */
  142. writel(cfg->mainnandsdmmcclk,
  143. &clock_manager_base->main_pll.mainnandsdmmcclk);
  144. writel(cfg->pernandsdmmcclk,
  145. &clock_manager_base->per_pll.pernandsdmmcclk);
  146. /* Peri perbaseclk */
  147. writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk);
  148. /* Peri s2fuser1clk */
  149. writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk);
  150. /* 7 us must have elapsed before we can enable the VCO */
  151. while (timer_get_us() < end)
  152. ;
  153. /* Enable vco */
  154. /* main pll vco */
  155. writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  156. &clock_manager_base->main_pll.vco);
  157. /* periferal pll */
  158. writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  159. &clock_manager_base->per_pll.vco);
  160. /* sdram pll vco */
  161. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  162. &clock_manager_base->sdr_pll.vco);
  163. /* L3 MP and L3 SP */
  164. writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv);
  165. writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv);
  166. writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv);
  167. /* L4 MP, L4 SP, can0, and can1 */
  168. writel(cfg->perdiv, &clock_manager_base->per_pll.div);
  169. writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv);
  170. cm_wait_for_lock(LOCKED_MASK);
  171. /* write the sdram clock counters before toggling outreset all */
  172. writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK,
  173. &clock_manager_base->sdr_pll.ddrdqsclk);
  174. writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK,
  175. &clock_manager_base->sdr_pll.ddr2xdqsclk);
  176. writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK,
  177. &clock_manager_base->sdr_pll.ddrdqclk);
  178. writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK,
  179. &clock_manager_base->sdr_pll.s2fuser2clk);
  180. /*
  181. * after locking, but before taking out of bypass
  182. * assert/deassert outresetall
  183. */
  184. u32 mainvco = readl(&clock_manager_base->main_pll.vco);
  185. /* assert main outresetall */
  186. writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
  187. &clock_manager_base->main_pll.vco);
  188. u32 periphvco = readl(&clock_manager_base->per_pll.vco);
  189. /* assert pheriph outresetall */
  190. writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
  191. &clock_manager_base->per_pll.vco);
  192. /* assert sdram outresetall */
  193. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN|
  194. CLKMGR_SDRPLLGRP_VCO_OUTRESETALL,
  195. &clock_manager_base->sdr_pll.vco);
  196. /* deassert main outresetall */
  197. writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
  198. &clock_manager_base->main_pll.vco);
  199. /* deassert pheriph outresetall */
  200. writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
  201. &clock_manager_base->per_pll.vco);
  202. /* deassert sdram outresetall */
  203. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  204. &clock_manager_base->sdr_pll.vco);
  205. /*
  206. * now that we've toggled outreset all, all the clocks
  207. * are aligned nicely; so we can change any phase.
  208. */
  209. ret = cm_write_with_phase(cfg->ddrdqsclk,
  210. &clock_manager_base->sdr_pll.ddrdqsclk,
  211. CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK);
  212. if (ret)
  213. return ret;
  214. /* SDRAM DDR2XDQSCLK */
  215. ret = cm_write_with_phase(cfg->ddr2xdqsclk,
  216. &clock_manager_base->sdr_pll.ddr2xdqsclk,
  217. CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK);
  218. if (ret)
  219. return ret;
  220. ret = cm_write_with_phase(cfg->ddrdqclk,
  221. &clock_manager_base->sdr_pll.ddrdqclk,
  222. CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK);
  223. if (ret)
  224. return ret;
  225. ret = cm_write_with_phase(cfg->s2fuser2clk,
  226. &clock_manager_base->sdr_pll.s2fuser2clk,
  227. CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK);
  228. if (ret)
  229. return ret;
  230. /* Take all three PLLs out of bypass when safe mode is cleared. */
  231. cm_write_bypass(0);
  232. /* clear safe mode */
  233. cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE);
  234. /*
  235. * now that safe mode is clear with clocks gated
  236. * it safe to change the source mux for the flashes the the L4_MAIN
  237. */
  238. writel(cfg->persrc, &clock_manager_base->per_pll.src);
  239. writel(cfg->l4src, &clock_manager_base->main_pll.l4src);
  240. /* Now ungate non-hw-managed clocks */
  241. writel(~0, &clock_manager_base->main_pll.en);
  242. writel(~0, &clock_manager_base->per_pll.en);
  243. writel(~0, &clock_manager_base->sdr_pll.en);
  244. /* Clear the loss of lock bits (write 1 to clear) */
  245. writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK |
  246. CLKMGR_INTER_MAINPLLLOST_MASK,
  247. &clock_manager_base->inter);
  248. return 0;
  249. }
  250. static unsigned int cm_get_main_vco_clk_hz(void)
  251. {
  252. u32 reg, clock;
  253. /* get the main VCO clock */
  254. reg = readl(&clock_manager_base->main_pll.vco);
  255. clock = cm_get_osc_clk_hz(1);
  256. clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >>
  257. CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1;
  258. clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >>
  259. CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1;
  260. return clock;
  261. }
  262. static unsigned int cm_get_per_vco_clk_hz(void)
  263. {
  264. u32 reg, clock = 0;
  265. /* identify PER PLL clock source */
  266. reg = readl(&clock_manager_base->per_pll.vco);
  267. reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >>
  268. CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET;
  269. if (reg == CLKMGR_VCO_SSRC_EOSC1)
  270. clock = cm_get_osc_clk_hz(1);
  271. else if (reg == CLKMGR_VCO_SSRC_EOSC2)
  272. clock = cm_get_osc_clk_hz(2);
  273. else if (reg == CLKMGR_VCO_SSRC_F2S)
  274. clock = cm_get_f2s_per_ref_clk_hz();
  275. /* get the PER VCO clock */
  276. reg = readl(&clock_manager_base->per_pll.vco);
  277. clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >>
  278. CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1;
  279. clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >>
  280. CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1;
  281. return clock;
  282. }
  283. unsigned long cm_get_mpu_clk_hz(void)
  284. {
  285. u32 reg, clock;
  286. clock = cm_get_main_vco_clk_hz();
  287. /* get the MPU clock */
  288. reg = readl(&clock_manager_base->altera.mpuclk);
  289. clock /= (reg + 1);
  290. reg = readl(&clock_manager_base->main_pll.mpuclk);
  291. clock /= (reg + 1);
  292. return clock;
  293. }
  294. unsigned long cm_get_sdram_clk_hz(void)
  295. {
  296. u32 reg, clock = 0;
  297. /* identify SDRAM PLL clock source */
  298. reg = readl(&clock_manager_base->sdr_pll.vco);
  299. reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >>
  300. CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET;
  301. if (reg == CLKMGR_VCO_SSRC_EOSC1)
  302. clock = cm_get_osc_clk_hz(1);
  303. else if (reg == CLKMGR_VCO_SSRC_EOSC2)
  304. clock = cm_get_osc_clk_hz(2);
  305. else if (reg == CLKMGR_VCO_SSRC_F2S)
  306. clock = cm_get_f2s_sdr_ref_clk_hz();
  307. /* get the SDRAM VCO clock */
  308. reg = readl(&clock_manager_base->sdr_pll.vco);
  309. clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >>
  310. CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1;
  311. clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >>
  312. CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1;
  313. /* get the SDRAM (DDR_DQS) clock */
  314. reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk);
  315. reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >>
  316. CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET;
  317. clock /= (reg + 1);
  318. return clock;
  319. }
  320. unsigned int cm_get_l4_sp_clk_hz(void)
  321. {
  322. u32 reg, clock = 0;
  323. /* identify the source of L4 SP clock */
  324. reg = readl(&clock_manager_base->main_pll.l4src);
  325. reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >>
  326. CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET;
  327. if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) {
  328. clock = cm_get_main_vco_clk_hz();
  329. /* get the clock prior L4 SP divider (main clk) */
  330. reg = readl(&clock_manager_base->altera.mainclk);
  331. clock /= (reg + 1);
  332. reg = readl(&clock_manager_base->main_pll.mainclk);
  333. clock /= (reg + 1);
  334. } else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) {
  335. clock = cm_get_per_vco_clk_hz();
  336. /* get the clock prior L4 SP divider (periph_base_clk) */
  337. reg = readl(&clock_manager_base->per_pll.perbaseclk);
  338. clock /= (reg + 1);
  339. }
  340. /* get the L4 SP clock which supplied to UART */
  341. reg = readl(&clock_manager_base->main_pll.maindiv);
  342. reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >>
  343. CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET;
  344. clock = clock / (1 << reg);
  345. return clock;
  346. }
  347. unsigned int cm_get_mmc_controller_clk_hz(void)
  348. {
  349. u32 reg, clock = 0;
  350. /* identify the source of MMC clock */
  351. reg = readl(&clock_manager_base->per_pll.src);
  352. reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >>
  353. CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET;
  354. if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) {
  355. clock = cm_get_f2s_per_ref_clk_hz();
  356. } else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) {
  357. clock = cm_get_main_vco_clk_hz();
  358. /* get the SDMMC clock */
  359. reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk);
  360. clock /= (reg + 1);
  361. } else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) {
  362. clock = cm_get_per_vco_clk_hz();
  363. /* get the SDMMC clock */
  364. reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk);
  365. clock /= (reg + 1);
  366. }
  367. /* further divide by 4 as we have fixed divider at wrapper */
  368. clock /= 4;
  369. return clock;
  370. }
  371. unsigned int cm_get_qspi_controller_clk_hz(void)
  372. {
  373. u32 reg, clock = 0;
  374. /* identify the source of QSPI clock */
  375. reg = readl(&clock_manager_base->per_pll.src);
  376. reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >>
  377. CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET;
  378. if (reg == CLKMGR_QSPI_CLK_SRC_F2S) {
  379. clock = cm_get_f2s_per_ref_clk_hz();
  380. } else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) {
  381. clock = cm_get_main_vco_clk_hz();
  382. /* get the qspi clock */
  383. reg = readl(&clock_manager_base->main_pll.mainqspiclk);
  384. clock /= (reg + 1);
  385. } else if (reg == CLKMGR_QSPI_CLK_SRC_PER) {
  386. clock = cm_get_per_vco_clk_hz();
  387. /* get the qspi clock */
  388. reg = readl(&clock_manager_base->per_pll.perqspiclk);
  389. clock /= (reg + 1);
  390. }
  391. return clock;
  392. }
  393. unsigned int cm_get_spi_controller_clk_hz(void)
  394. {
  395. u32 reg, clock = 0;
  396. clock = cm_get_per_vco_clk_hz();
  397. /* get the clock prior L4 SP divider (periph_base_clk) */
  398. reg = readl(&clock_manager_base->per_pll.perbaseclk);
  399. clock /= (reg + 1);
  400. return clock;
  401. }
  402. /* Override weak dw_spi_get_clk implementation in designware_spi.c driver */
  403. int dw_spi_get_clk(struct udevice *bus, ulong *rate)
  404. {
  405. *rate = cm_get_spi_controller_clk_hz();
  406. return 0;
  407. }
  408. void cm_print_clock_quick_summary(void)
  409. {
  410. printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
  411. printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000);
  412. printf("EOSC1 %8d kHz\n", cm_get_osc_clk_hz(1) / 1000);
  413. printf("EOSC2 %8d kHz\n", cm_get_osc_clk_hz(2) / 1000);
  414. printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000);
  415. printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000);
  416. printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
  417. printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
  418. printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
  419. printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
  420. }