sun8i_emac.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. /*
  2. * (C) Copyright 2016
  3. * Author: Amit Singh Tomar, amittomer25@gmail.com
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. *
  7. * Ethernet driver for H3/A64/A83T based SoC's
  8. *
  9. * It is derived from the work done by
  10. * LABBE Corentin & Chen-Yu Tsai for Linux, THANKS!
  11. *
  12. */
  13. #include <asm/io.h>
  14. #include <asm/arch/clock.h>
  15. #include <asm/arch/gpio.h>
  16. #include <common.h>
  17. #include <dm.h>
  18. #include <fdt_support.h>
  19. #include <linux/err.h>
  20. #include <malloc.h>
  21. #include <miiphy.h>
  22. #include <net.h>
  23. #include <dt-bindings/pinctrl/sun4i-a10.h>
  24. #ifdef CONFIG_DM_GPIO
  25. #include <asm-generic/gpio.h>
  26. #endif
  27. #define MDIO_CMD_MII_BUSY BIT(0)
  28. #define MDIO_CMD_MII_WRITE BIT(1)
  29. #define MDIO_CMD_MII_PHY_REG_ADDR_MASK 0x000001f0
  30. #define MDIO_CMD_MII_PHY_REG_ADDR_SHIFT 4
  31. #define MDIO_CMD_MII_PHY_ADDR_MASK 0x0001f000
  32. #define MDIO_CMD_MII_PHY_ADDR_SHIFT 12
  33. #define CONFIG_TX_DESCR_NUM 32
  34. #define CONFIG_RX_DESCR_NUM 32
  35. #define CONFIG_ETH_BUFSIZE 2048 /* Note must be dma aligned */
  36. /*
  37. * The datasheet says that each descriptor can transfers up to 4096 bytes
  38. * But later, the register documentation reduces that value to 2048,
  39. * using 2048 cause strange behaviours and even BSP driver use 2047
  40. */
  41. #define CONFIG_ETH_RXSIZE 2044 /* Note must fit in ETH_BUFSIZE */
  42. #define TX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_TX_DESCR_NUM)
  43. #define RX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_RX_DESCR_NUM)
  44. #define H3_EPHY_DEFAULT_VALUE 0x58000
  45. #define H3_EPHY_DEFAULT_MASK GENMASK(31, 15)
  46. #define H3_EPHY_ADDR_SHIFT 20
  47. #define REG_PHY_ADDR_MASK GENMASK(4, 0)
  48. #define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */
  49. #define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */
  50. #define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */
  51. #define SC_RMII_EN BIT(13)
  52. #define SC_EPIT BIT(2) /* 1: RGMII, 0: MII */
  53. #define SC_ETCS_MASK GENMASK(1, 0)
  54. #define SC_ETCS_EXT_GMII 0x1
  55. #define SC_ETCS_INT_GMII 0x2
  56. #define CONFIG_MDIO_TIMEOUT (3 * CONFIG_SYS_HZ)
  57. #define AHB_GATE_OFFSET_EPHY 0
  58. #if defined(CONFIG_MACH_SUNXI_H3_H5)
  59. #define SUN8I_GPD8_GMAC 2
  60. #else
  61. #define SUN8I_GPD8_GMAC 4
  62. #endif
  63. /* H3/A64 EMAC Register's offset */
  64. #define EMAC_CTL0 0x00
  65. #define EMAC_CTL1 0x04
  66. #define EMAC_INT_STA 0x08
  67. #define EMAC_INT_EN 0x0c
  68. #define EMAC_TX_CTL0 0x10
  69. #define EMAC_TX_CTL1 0x14
  70. #define EMAC_TX_FLOW_CTL 0x1c
  71. #define EMAC_TX_DMA_DESC 0x20
  72. #define EMAC_RX_CTL0 0x24
  73. #define EMAC_RX_CTL1 0x28
  74. #define EMAC_RX_DMA_DESC 0x34
  75. #define EMAC_MII_CMD 0x48
  76. #define EMAC_MII_DATA 0x4c
  77. #define EMAC_ADDR0_HIGH 0x50
  78. #define EMAC_ADDR0_LOW 0x54
  79. #define EMAC_TX_DMA_STA 0xb0
  80. #define EMAC_TX_CUR_DESC 0xb4
  81. #define EMAC_TX_CUR_BUF 0xb8
  82. #define EMAC_RX_DMA_STA 0xc0
  83. #define EMAC_RX_CUR_DESC 0xc4
  84. DECLARE_GLOBAL_DATA_PTR;
  85. enum emac_variant {
  86. A83T_EMAC = 1,
  87. H3_EMAC,
  88. A64_EMAC,
  89. };
  90. struct emac_dma_desc {
  91. u32 status;
  92. u32 st;
  93. u32 buf_addr;
  94. u32 next;
  95. } __aligned(ARCH_DMA_MINALIGN);
  96. struct emac_eth_dev {
  97. struct emac_dma_desc rx_chain[CONFIG_TX_DESCR_NUM];
  98. struct emac_dma_desc tx_chain[CONFIG_RX_DESCR_NUM];
  99. char rxbuffer[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
  100. char txbuffer[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
  101. u32 interface;
  102. u32 phyaddr;
  103. u32 link;
  104. u32 speed;
  105. u32 duplex;
  106. u32 phy_configured;
  107. u32 tx_currdescnum;
  108. u32 rx_currdescnum;
  109. u32 addr;
  110. u32 tx_slot;
  111. bool use_internal_phy;
  112. enum emac_variant variant;
  113. void *mac_reg;
  114. phys_addr_t sysctl_reg;
  115. struct phy_device *phydev;
  116. struct mii_dev *bus;
  117. #ifdef CONFIG_DM_GPIO
  118. struct gpio_desc reset_gpio;
  119. #endif
  120. };
  121. struct sun8i_eth_pdata {
  122. struct eth_pdata eth_pdata;
  123. u32 reset_delays[3];
  124. };
  125. static int sun8i_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
  126. {
  127. struct udevice *dev = bus->priv;
  128. struct emac_eth_dev *priv = dev_get_priv(dev);
  129. ulong start;
  130. u32 miiaddr = 0;
  131. int timeout = CONFIG_MDIO_TIMEOUT;
  132. miiaddr &= ~MDIO_CMD_MII_WRITE;
  133. miiaddr &= ~MDIO_CMD_MII_PHY_REG_ADDR_MASK;
  134. miiaddr |= (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
  135. MDIO_CMD_MII_PHY_REG_ADDR_MASK;
  136. miiaddr &= ~MDIO_CMD_MII_PHY_ADDR_MASK;
  137. miiaddr |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
  138. MDIO_CMD_MII_PHY_ADDR_MASK;
  139. miiaddr |= MDIO_CMD_MII_BUSY;
  140. writel(miiaddr, priv->mac_reg + EMAC_MII_CMD);
  141. start = get_timer(0);
  142. while (get_timer(start) < timeout) {
  143. if (!(readl(priv->mac_reg + EMAC_MII_CMD) & MDIO_CMD_MII_BUSY))
  144. return readl(priv->mac_reg + EMAC_MII_DATA);
  145. udelay(10);
  146. };
  147. return -1;
  148. }
  149. static int sun8i_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
  150. u16 val)
  151. {
  152. struct udevice *dev = bus->priv;
  153. struct emac_eth_dev *priv = dev_get_priv(dev);
  154. ulong start;
  155. u32 miiaddr = 0;
  156. int ret = -1, timeout = CONFIG_MDIO_TIMEOUT;
  157. miiaddr &= ~MDIO_CMD_MII_PHY_REG_ADDR_MASK;
  158. miiaddr |= (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
  159. MDIO_CMD_MII_PHY_REG_ADDR_MASK;
  160. miiaddr &= ~MDIO_CMD_MII_PHY_ADDR_MASK;
  161. miiaddr |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
  162. MDIO_CMD_MII_PHY_ADDR_MASK;
  163. miiaddr |= MDIO_CMD_MII_WRITE;
  164. miiaddr |= MDIO_CMD_MII_BUSY;
  165. writel(val, priv->mac_reg + EMAC_MII_DATA);
  166. writel(miiaddr, priv->mac_reg + EMAC_MII_CMD);
  167. start = get_timer(0);
  168. while (get_timer(start) < timeout) {
  169. if (!(readl(priv->mac_reg + EMAC_MII_CMD) &
  170. MDIO_CMD_MII_BUSY)) {
  171. ret = 0;
  172. break;
  173. }
  174. udelay(10);
  175. };
  176. return ret;
  177. }
  178. static int _sun8i_write_hwaddr(struct emac_eth_dev *priv, u8 *mac_id)
  179. {
  180. u32 macid_lo, macid_hi;
  181. macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) +
  182. (mac_id[3] << 24);
  183. macid_hi = mac_id[4] + (mac_id[5] << 8);
  184. writel(macid_hi, priv->mac_reg + EMAC_ADDR0_HIGH);
  185. writel(macid_lo, priv->mac_reg + EMAC_ADDR0_LOW);
  186. return 0;
  187. }
  188. static void sun8i_adjust_link(struct emac_eth_dev *priv,
  189. struct phy_device *phydev)
  190. {
  191. u32 v;
  192. v = readl(priv->mac_reg + EMAC_CTL0);
  193. if (phydev->duplex)
  194. v |= BIT(0);
  195. else
  196. v &= ~BIT(0);
  197. v &= ~0x0C;
  198. switch (phydev->speed) {
  199. case 1000:
  200. break;
  201. case 100:
  202. v |= BIT(2);
  203. v |= BIT(3);
  204. break;
  205. case 10:
  206. v |= BIT(3);
  207. break;
  208. }
  209. writel(v, priv->mac_reg + EMAC_CTL0);
  210. }
  211. static int sun8i_emac_set_syscon_ephy(struct emac_eth_dev *priv, u32 *reg)
  212. {
  213. if (priv->use_internal_phy) {
  214. /* H3 based SoC's that has an Internal 100MBit PHY
  215. * needs to be configured and powered up before use
  216. */
  217. *reg &= ~H3_EPHY_DEFAULT_MASK;
  218. *reg |= H3_EPHY_DEFAULT_VALUE;
  219. *reg |= priv->phyaddr << H3_EPHY_ADDR_SHIFT;
  220. *reg &= ~H3_EPHY_SHUTDOWN;
  221. *reg |= H3_EPHY_SELECT;
  222. } else
  223. /* This is to select External Gigabit PHY on
  224. * the boards with H3 SoC.
  225. */
  226. *reg &= ~H3_EPHY_SELECT;
  227. return 0;
  228. }
  229. static int sun8i_emac_set_syscon(struct emac_eth_dev *priv)
  230. {
  231. int ret;
  232. u32 reg;
  233. reg = readl(priv->sysctl_reg + 0x30);
  234. if (priv->variant == H3_EMAC) {
  235. ret = sun8i_emac_set_syscon_ephy(priv, &reg);
  236. if (ret)
  237. return ret;
  238. }
  239. reg &= ~(SC_ETCS_MASK | SC_EPIT);
  240. if (priv->variant == H3_EMAC || priv->variant == A64_EMAC)
  241. reg &= ~SC_RMII_EN;
  242. switch (priv->interface) {
  243. case PHY_INTERFACE_MODE_MII:
  244. /* default */
  245. break;
  246. case PHY_INTERFACE_MODE_RGMII:
  247. reg |= SC_EPIT | SC_ETCS_INT_GMII;
  248. break;
  249. case PHY_INTERFACE_MODE_RMII:
  250. if (priv->variant == H3_EMAC ||
  251. priv->variant == A64_EMAC) {
  252. reg |= SC_RMII_EN | SC_ETCS_EXT_GMII;
  253. break;
  254. }
  255. /* RMII not supported on A83T */
  256. default:
  257. debug("%s: Invalid PHY interface\n", __func__);
  258. return -EINVAL;
  259. }
  260. writel(reg, priv->sysctl_reg + 0x30);
  261. return 0;
  262. }
  263. static int sun8i_phy_init(struct emac_eth_dev *priv, void *dev)
  264. {
  265. struct phy_device *phydev;
  266. phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
  267. if (!phydev)
  268. return -ENODEV;
  269. phy_connect_dev(phydev, dev);
  270. priv->phydev = phydev;
  271. phy_config(priv->phydev);
  272. return 0;
  273. }
  274. static void rx_descs_init(struct emac_eth_dev *priv)
  275. {
  276. struct emac_dma_desc *desc_table_p = &priv->rx_chain[0];
  277. char *rxbuffs = &priv->rxbuffer[0];
  278. struct emac_dma_desc *desc_p;
  279. u32 idx;
  280. /* flush Rx buffers */
  281. flush_dcache_range((uintptr_t)rxbuffs, (ulong)rxbuffs +
  282. RX_TOTAL_BUFSIZE);
  283. for (idx = 0; idx < CONFIG_RX_DESCR_NUM; idx++) {
  284. desc_p = &desc_table_p[idx];
  285. desc_p->buf_addr = (uintptr_t)&rxbuffs[idx * CONFIG_ETH_BUFSIZE]
  286. ;
  287. desc_p->next = (uintptr_t)&desc_table_p[idx + 1];
  288. desc_p->st |= CONFIG_ETH_RXSIZE;
  289. desc_p->status = BIT(31);
  290. }
  291. /* Correcting the last pointer of the chain */
  292. desc_p->next = (uintptr_t)&desc_table_p[0];
  293. flush_dcache_range((uintptr_t)priv->rx_chain,
  294. (uintptr_t)priv->rx_chain +
  295. sizeof(priv->rx_chain));
  296. writel((uintptr_t)&desc_table_p[0], (priv->mac_reg + EMAC_RX_DMA_DESC));
  297. priv->rx_currdescnum = 0;
  298. }
  299. static void tx_descs_init(struct emac_eth_dev *priv)
  300. {
  301. struct emac_dma_desc *desc_table_p = &priv->tx_chain[0];
  302. char *txbuffs = &priv->txbuffer[0];
  303. struct emac_dma_desc *desc_p;
  304. u32 idx;
  305. for (idx = 0; idx < CONFIG_TX_DESCR_NUM; idx++) {
  306. desc_p = &desc_table_p[idx];
  307. desc_p->buf_addr = (uintptr_t)&txbuffs[idx * CONFIG_ETH_BUFSIZE]
  308. ;
  309. desc_p->next = (uintptr_t)&desc_table_p[idx + 1];
  310. desc_p->status = (1 << 31);
  311. desc_p->st = 0;
  312. }
  313. /* Correcting the last pointer of the chain */
  314. desc_p->next = (uintptr_t)&desc_table_p[0];
  315. /* Flush all Tx buffer descriptors */
  316. flush_dcache_range((uintptr_t)priv->tx_chain,
  317. (uintptr_t)priv->tx_chain +
  318. sizeof(priv->tx_chain));
  319. writel((uintptr_t)&desc_table_p[0], priv->mac_reg + EMAC_TX_DMA_DESC);
  320. priv->tx_currdescnum = 0;
  321. }
  322. static int _sun8i_emac_eth_init(struct emac_eth_dev *priv, u8 *enetaddr)
  323. {
  324. u32 reg, v;
  325. int timeout = 100;
  326. reg = readl((priv->mac_reg + EMAC_CTL1));
  327. if (!(reg & 0x1)) {
  328. /* Soft reset MAC */
  329. setbits_le32((priv->mac_reg + EMAC_CTL1), 0x1);
  330. do {
  331. reg = readl(priv->mac_reg + EMAC_CTL1);
  332. } while ((reg & 0x01) != 0 && (--timeout));
  333. if (!timeout) {
  334. printf("%s: Timeout\n", __func__);
  335. return -1;
  336. }
  337. }
  338. /* Rewrite mac address after reset */
  339. _sun8i_write_hwaddr(priv, enetaddr);
  340. v = readl(priv->mac_reg + EMAC_TX_CTL1);
  341. /* TX_MD Transmission starts after a full frame located in TX DMA FIFO*/
  342. v |= BIT(1);
  343. writel(v, priv->mac_reg + EMAC_TX_CTL1);
  344. v = readl(priv->mac_reg + EMAC_RX_CTL1);
  345. /* RX_MD RX DMA reads data from RX DMA FIFO to host memory after a
  346. * complete frame has been written to RX DMA FIFO
  347. */
  348. v |= BIT(1);
  349. writel(v, priv->mac_reg + EMAC_RX_CTL1);
  350. /* DMA */
  351. writel(8 << 24, priv->mac_reg + EMAC_CTL1);
  352. /* Initialize rx/tx descriptors */
  353. rx_descs_init(priv);
  354. tx_descs_init(priv);
  355. /* PHY Start Up */
  356. phy_startup(priv->phydev);
  357. sun8i_adjust_link(priv, priv->phydev);
  358. /* Start RX DMA */
  359. v = readl(priv->mac_reg + EMAC_RX_CTL1);
  360. v |= BIT(30);
  361. writel(v, priv->mac_reg + EMAC_RX_CTL1);
  362. /* Start TX DMA */
  363. v = readl(priv->mac_reg + EMAC_TX_CTL1);
  364. v |= BIT(30);
  365. writel(v, priv->mac_reg + EMAC_TX_CTL1);
  366. /* Enable RX/TX */
  367. setbits_le32(priv->mac_reg + EMAC_RX_CTL0, BIT(31));
  368. setbits_le32(priv->mac_reg + EMAC_TX_CTL0, BIT(31));
  369. return 0;
  370. }
  371. static int parse_phy_pins(struct udevice *dev)
  372. {
  373. int offset;
  374. const char *pin_name;
  375. int drive, pull, i;
  376. offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev),
  377. "pinctrl-0");
  378. if (offset < 0) {
  379. printf("WARNING: emac: cannot find pinctrl-0 node\n");
  380. return offset;
  381. }
  382. drive = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0,
  383. "drive-strength", ~0);
  384. if (drive != ~0) {
  385. if (drive <= 10)
  386. drive = SUN4I_PINCTRL_10_MA;
  387. else if (drive <= 20)
  388. drive = SUN4I_PINCTRL_20_MA;
  389. else if (drive <= 30)
  390. drive = SUN4I_PINCTRL_30_MA;
  391. else
  392. drive = SUN4I_PINCTRL_40_MA;
  393. } else {
  394. drive = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0,
  395. "allwinner,drive", 4);
  396. }
  397. if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-up", NULL))
  398. pull = SUN4I_PINCTRL_PULL_UP;
  399. else if (fdt_get_property(gd->fdt_blob, offset, "bias-disable", NULL))
  400. pull = SUN4I_PINCTRL_NO_PULL;
  401. else if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-down", NULL))
  402. pull = SUN4I_PINCTRL_PULL_DOWN;
  403. else
  404. pull = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0,
  405. "allwinner,pull", 0);
  406. for (i = 0; ; i++) {
  407. int pin;
  408. pin_name = fdt_stringlist_get(gd->fdt_blob, offset,
  409. "allwinner,pins", i, NULL);
  410. if (!pin_name) {
  411. pin_name = fdt_stringlist_get(gd->fdt_blob, offset,
  412. "pins", i, NULL);
  413. if (!pin_name)
  414. break;
  415. }
  416. pin = sunxi_name_to_gpio(pin_name);
  417. if (pin < 0)
  418. continue;
  419. sunxi_gpio_set_cfgpin(pin, SUN8I_GPD8_GMAC);
  420. if (drive != ~0)
  421. sunxi_gpio_set_drv(pin, drive);
  422. if (pull != ~0)
  423. sunxi_gpio_set_pull(pin, pull);
  424. }
  425. if (!i) {
  426. printf("WARNING: emac: cannot find pins property\n");
  427. return -2;
  428. }
  429. return 0;
  430. }
  431. static int _sun8i_eth_recv(struct emac_eth_dev *priv, uchar **packetp)
  432. {
  433. u32 status, desc_num = priv->rx_currdescnum;
  434. struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
  435. int length = -EAGAIN;
  436. int good_packet = 1;
  437. uintptr_t desc_start = (uintptr_t)desc_p;
  438. uintptr_t desc_end = desc_start +
  439. roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN);
  440. ulong data_start = (uintptr_t)desc_p->buf_addr;
  441. ulong data_end;
  442. /* Invalidate entire buffer descriptor */
  443. invalidate_dcache_range(desc_start, desc_end);
  444. status = desc_p->status;
  445. /* Check for DMA own bit */
  446. if (!(status & BIT(31))) {
  447. length = (desc_p->status >> 16) & 0x3FFF;
  448. if (length < 0x40) {
  449. good_packet = 0;
  450. debug("RX: Bad Packet (runt)\n");
  451. }
  452. data_end = data_start + length;
  453. /* Invalidate received data */
  454. invalidate_dcache_range(rounddown(data_start,
  455. ARCH_DMA_MINALIGN),
  456. roundup(data_end,
  457. ARCH_DMA_MINALIGN));
  458. if (good_packet) {
  459. if (length > CONFIG_ETH_RXSIZE) {
  460. printf("Received packet is too big (len=%d)\n",
  461. length);
  462. return -EMSGSIZE;
  463. }
  464. *packetp = (uchar *)(ulong)desc_p->buf_addr;
  465. return length;
  466. }
  467. }
  468. return length;
  469. }
  470. static int _sun8i_emac_eth_send(struct emac_eth_dev *priv, void *packet,
  471. int len)
  472. {
  473. u32 v, desc_num = priv->tx_currdescnum;
  474. struct emac_dma_desc *desc_p = &priv->tx_chain[desc_num];
  475. uintptr_t desc_start = (uintptr_t)desc_p;
  476. uintptr_t desc_end = desc_start +
  477. roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN);
  478. uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
  479. uintptr_t data_end = data_start +
  480. roundup(len, ARCH_DMA_MINALIGN);
  481. /* Invalidate entire buffer descriptor */
  482. invalidate_dcache_range(desc_start, desc_end);
  483. desc_p->st = len;
  484. /* Mandatory undocumented bit */
  485. desc_p->st |= BIT(24);
  486. memcpy((void *)data_start, packet, len);
  487. /* Flush data to be sent */
  488. flush_dcache_range(data_start, data_end);
  489. /* frame end */
  490. desc_p->st |= BIT(30);
  491. desc_p->st |= BIT(31);
  492. /*frame begin */
  493. desc_p->st |= BIT(29);
  494. desc_p->status = BIT(31);
  495. /*Descriptors st and status field has changed, so FLUSH it */
  496. flush_dcache_range(desc_start, desc_end);
  497. /* Move to next Descriptor and wrap around */
  498. if (++desc_num >= CONFIG_TX_DESCR_NUM)
  499. desc_num = 0;
  500. priv->tx_currdescnum = desc_num;
  501. /* Start the DMA */
  502. v = readl(priv->mac_reg + EMAC_TX_CTL1);
  503. v |= BIT(31);/* mandatory */
  504. v |= BIT(30);/* mandatory */
  505. writel(v, priv->mac_reg + EMAC_TX_CTL1);
  506. return 0;
  507. }
  508. static int sun8i_eth_write_hwaddr(struct udevice *dev)
  509. {
  510. struct eth_pdata *pdata = dev_get_platdata(dev);
  511. struct emac_eth_dev *priv = dev_get_priv(dev);
  512. return _sun8i_write_hwaddr(priv, pdata->enetaddr);
  513. }
  514. static void sun8i_emac_board_setup(struct emac_eth_dev *priv)
  515. {
  516. struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  517. #ifdef CONFIG_MACH_SUNXI_H3_H5
  518. /* Only H3/H5 have clock controls for internal EPHY */
  519. if (priv->use_internal_phy) {
  520. /* Set clock gating for ephy */
  521. setbits_le32(&ccm->bus_gate4, BIT(AHB_GATE_OFFSET_EPHY));
  522. /* Deassert EPHY */
  523. setbits_le32(&ccm->ahb_reset2_cfg, BIT(AHB_RESET_OFFSET_EPHY));
  524. }
  525. #endif
  526. /* Set clock gating for emac */
  527. setbits_le32(&ccm->ahb_gate0, BIT(AHB_GATE_OFFSET_GMAC));
  528. /* De-assert EMAC */
  529. setbits_le32(&ccm->ahb_reset0_cfg, BIT(AHB_RESET_OFFSET_GMAC));
  530. }
  531. #if defined(CONFIG_DM_GPIO)
  532. static int sun8i_mdio_reset(struct mii_dev *bus)
  533. {
  534. struct udevice *dev = bus->priv;
  535. struct emac_eth_dev *priv = dev_get_priv(dev);
  536. struct sun8i_eth_pdata *pdata = dev_get_platdata(dev);
  537. int ret;
  538. if (!dm_gpio_is_valid(&priv->reset_gpio))
  539. return 0;
  540. /* reset the phy */
  541. ret = dm_gpio_set_value(&priv->reset_gpio, 0);
  542. if (ret)
  543. return ret;
  544. udelay(pdata->reset_delays[0]);
  545. ret = dm_gpio_set_value(&priv->reset_gpio, 1);
  546. if (ret)
  547. return ret;
  548. udelay(pdata->reset_delays[1]);
  549. ret = dm_gpio_set_value(&priv->reset_gpio, 0);
  550. if (ret)
  551. return ret;
  552. udelay(pdata->reset_delays[2]);
  553. return 0;
  554. }
  555. #endif
  556. static int sun8i_mdio_init(const char *name, struct udevice *priv)
  557. {
  558. struct mii_dev *bus = mdio_alloc();
  559. if (!bus) {
  560. debug("Failed to allocate MDIO bus\n");
  561. return -ENOMEM;
  562. }
  563. bus->read = sun8i_mdio_read;
  564. bus->write = sun8i_mdio_write;
  565. snprintf(bus->name, sizeof(bus->name), name);
  566. bus->priv = (void *)priv;
  567. #if defined(CONFIG_DM_GPIO)
  568. bus->reset = sun8i_mdio_reset;
  569. #endif
  570. return mdio_register(bus);
  571. }
  572. static int sun8i_emac_eth_start(struct udevice *dev)
  573. {
  574. struct eth_pdata *pdata = dev_get_platdata(dev);
  575. return _sun8i_emac_eth_init(dev->priv, pdata->enetaddr);
  576. }
  577. static int sun8i_emac_eth_send(struct udevice *dev, void *packet, int length)
  578. {
  579. struct emac_eth_dev *priv = dev_get_priv(dev);
  580. return _sun8i_emac_eth_send(priv, packet, length);
  581. }
  582. static int sun8i_emac_eth_recv(struct udevice *dev, int flags, uchar **packetp)
  583. {
  584. struct emac_eth_dev *priv = dev_get_priv(dev);
  585. return _sun8i_eth_recv(priv, packetp);
  586. }
  587. static int _sun8i_free_pkt(struct emac_eth_dev *priv)
  588. {
  589. u32 desc_num = priv->rx_currdescnum;
  590. struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
  591. uintptr_t desc_start = (uintptr_t)desc_p;
  592. uintptr_t desc_end = desc_start +
  593. roundup(sizeof(u32), ARCH_DMA_MINALIGN);
  594. /* Make the current descriptor valid again */
  595. desc_p->status |= BIT(31);
  596. /* Flush Status field of descriptor */
  597. flush_dcache_range(desc_start, desc_end);
  598. /* Move to next desc and wrap-around condition. */
  599. if (++desc_num >= CONFIG_RX_DESCR_NUM)
  600. desc_num = 0;
  601. priv->rx_currdescnum = desc_num;
  602. return 0;
  603. }
  604. static int sun8i_eth_free_pkt(struct udevice *dev, uchar *packet,
  605. int length)
  606. {
  607. struct emac_eth_dev *priv = dev_get_priv(dev);
  608. return _sun8i_free_pkt(priv);
  609. }
  610. static void sun8i_emac_eth_stop(struct udevice *dev)
  611. {
  612. struct emac_eth_dev *priv = dev_get_priv(dev);
  613. /* Stop Rx/Tx transmitter */
  614. clrbits_le32(priv->mac_reg + EMAC_RX_CTL0, BIT(31));
  615. clrbits_le32(priv->mac_reg + EMAC_TX_CTL0, BIT(31));
  616. /* Stop TX DMA */
  617. clrbits_le32(priv->mac_reg + EMAC_TX_CTL1, BIT(30));
  618. phy_shutdown(priv->phydev);
  619. }
  620. static int sun8i_emac_eth_probe(struct udevice *dev)
  621. {
  622. struct eth_pdata *pdata = dev_get_platdata(dev);
  623. struct emac_eth_dev *priv = dev_get_priv(dev);
  624. priv->mac_reg = (void *)pdata->iobase;
  625. sun8i_emac_board_setup(priv);
  626. sun8i_emac_set_syscon(priv);
  627. sun8i_mdio_init(dev->name, dev);
  628. priv->bus = miiphy_get_dev_by_name(dev->name);
  629. return sun8i_phy_init(priv, dev);
  630. }
  631. static const struct eth_ops sun8i_emac_eth_ops = {
  632. .start = sun8i_emac_eth_start,
  633. .write_hwaddr = sun8i_eth_write_hwaddr,
  634. .send = sun8i_emac_eth_send,
  635. .recv = sun8i_emac_eth_recv,
  636. .free_pkt = sun8i_eth_free_pkt,
  637. .stop = sun8i_emac_eth_stop,
  638. };
  639. static int sun8i_emac_eth_ofdata_to_platdata(struct udevice *dev)
  640. {
  641. struct sun8i_eth_pdata *sun8i_pdata = dev_get_platdata(dev);
  642. struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
  643. struct emac_eth_dev *priv = dev_get_priv(dev);
  644. const char *phy_mode;
  645. int node = dev_of_offset(dev);
  646. int offset = 0;
  647. #ifdef CONFIG_DM_GPIO
  648. int reset_flags = GPIOD_IS_OUT;
  649. int ret = 0;
  650. #endif
  651. pdata->iobase = devfdt_get_addr_name(dev, "emac");
  652. if (pdata->iobase == FDT_ADDR_T_NONE)
  653. pdata->iobase = devfdt_get_addr(dev);
  654. if (pdata->iobase == FDT_ADDR_T_NONE) {
  655. debug("%s: Cannot find MAC base address\n", __func__);
  656. return -EINVAL;
  657. }
  658. priv->sysctl_reg = devfdt_get_addr_name(dev, "syscon");
  659. if (priv->sysctl_reg == FDT_ADDR_T_NONE) {
  660. const fdt32_t *reg;
  661. offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "syscon");
  662. if (offset < 0) {
  663. debug("%s: cannot find syscon node\n", __func__);
  664. return -EINVAL;
  665. }
  666. reg = fdt_getprop(gd->fdt_blob, offset, "reg", NULL);
  667. if (!reg) {
  668. debug("%s: cannot find reg property in syscon node\n",
  669. __func__);
  670. return -EINVAL;
  671. }
  672. priv->sysctl_reg = fdt_translate_address((void *)gd->fdt_blob,
  673. offset, reg);
  674. } else {
  675. priv->sysctl_reg -= 0x30;
  676. }
  677. if (priv->sysctl_reg == FDT_ADDR_T_NONE) {
  678. debug("%s: Cannot find syscon base address\n", __func__);
  679. return -EINVAL;
  680. }
  681. pdata->phy_interface = -1;
  682. priv->phyaddr = -1;
  683. priv->use_internal_phy = false;
  684. offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy");
  685. if (offset < 0)
  686. offset = fdtdec_lookup_phandle(gd->fdt_blob, node,
  687. "phy-handle");
  688. if (offset < 0) {
  689. debug("%s: Cannot find PHY address\n", __func__);
  690. return -EINVAL;
  691. }
  692. priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1);
  693. phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
  694. if (phy_mode)
  695. pdata->phy_interface = phy_get_interface_by_name(phy_mode);
  696. printf("phy interface%d\n", pdata->phy_interface);
  697. if (pdata->phy_interface == -1) {
  698. debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
  699. return -EINVAL;
  700. }
  701. priv->variant = dev_get_driver_data(dev);
  702. if (!priv->variant) {
  703. printf("%s: Missing variant '%s'\n", __func__,
  704. (char *)priv->variant);
  705. return -EINVAL;
  706. }
  707. if (priv->variant == H3_EMAC) {
  708. if (fdt_getprop(gd->fdt_blob, node,
  709. "allwinner,use-internal-phy", NULL)) {
  710. priv->use_internal_phy = true;
  711. } else {
  712. int parent = fdt_parent_offset(gd->fdt_blob, offset);
  713. if (parent >= 0 &&
  714. !fdt_node_check_compatible(gd->fdt_blob, parent,
  715. "allwinner,sun8i-h3-mdio-internal"))
  716. priv->use_internal_phy = true;
  717. }
  718. }
  719. priv->interface = pdata->phy_interface;
  720. if (!priv->use_internal_phy)
  721. parse_phy_pins(dev);
  722. #ifdef CONFIG_DM_GPIO
  723. if (fdtdec_get_bool(gd->fdt_blob, dev_of_offset(dev),
  724. "snps,reset-active-low"))
  725. reset_flags |= GPIOD_ACTIVE_LOW;
  726. ret = gpio_request_by_name(dev, "snps,reset-gpio", 0,
  727. &priv->reset_gpio, reset_flags);
  728. if (ret == 0) {
  729. ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev),
  730. "snps,reset-delays-us",
  731. sun8i_pdata->reset_delays, 3);
  732. } else if (ret == -ENOENT) {
  733. ret = 0;
  734. }
  735. #endif
  736. return 0;
  737. }
  738. static const struct udevice_id sun8i_emac_eth_ids[] = {
  739. {.compatible = "allwinner,sun8i-h3-emac", .data = (uintptr_t)H3_EMAC },
  740. {.compatible = "allwinner,sun50i-a64-emac",
  741. .data = (uintptr_t)A64_EMAC },
  742. {.compatible = "allwinner,sun8i-a83t-emac",
  743. .data = (uintptr_t)A83T_EMAC },
  744. { }
  745. };
  746. U_BOOT_DRIVER(eth_sun8i_emac) = {
  747. .name = "eth_sun8i_emac",
  748. .id = UCLASS_ETH,
  749. .of_match = sun8i_emac_eth_ids,
  750. .ofdata_to_platdata = sun8i_emac_eth_ofdata_to_platdata,
  751. .probe = sun8i_emac_eth_probe,
  752. .ops = &sun8i_emac_eth_ops,
  753. .priv_auto_alloc_size = sizeof(struct emac_eth_dev),
  754. .platdata_auto_alloc_size = sizeof(struct sun8i_eth_pdata),
  755. .flags = DM_FLAG_ALLOC_PRIV_DMA,
  756. };