clk_rk3399.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. /*
  2. * (C) Copyright 2015 Google, Inc
  3. * (C) 2017 Theobroma Systems Design und Consulting GmbH
  4. *
  5. * SPDX-License-Identifier: GPL-2.0
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <dt-structs.h>
  11. #include <errno.h>
  12. #include <mapmem.h>
  13. #include <syscon.h>
  14. #include <bitfield.h>
  15. #include <asm/io.h>
  16. #include <asm/arch/clock.h>
  17. #include <asm/arch/cru_rk3399.h>
  18. #include <asm/arch/hardware.h>
  19. #include <dm/lists.h>
  20. #include <dt-bindings/clock/rk3399-cru.h>
  21. DECLARE_GLOBAL_DATA_PTR;
  22. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  23. struct rk3399_clk_plat {
  24. struct dtd_rockchip_rk3399_cru dtd;
  25. };
  26. struct rk3399_pmuclk_plat {
  27. struct dtd_rockchip_rk3399_pmucru dtd;
  28. };
  29. #endif
  30. struct pll_div {
  31. u32 refdiv;
  32. u32 fbdiv;
  33. u32 postdiv1;
  34. u32 postdiv2;
  35. u32 frac;
  36. };
  37. #define RATE_TO_DIV(input_rate, output_rate) \
  38. ((input_rate) / (output_rate) - 1);
  39. #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
  40. #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
  41. .refdiv = _refdiv,\
  42. .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
  43. .postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
  44. #if defined(CONFIG_SPL_BUILD)
  45. static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
  46. static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
  47. #else
  48. static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
  49. #endif
  50. static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
  51. static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
  52. static const struct pll_div *apll_l_cfgs[] = {
  53. [APLL_L_1600_MHZ] = &apll_l_1600_cfg,
  54. [APLL_L_600_MHZ] = &apll_l_600_cfg,
  55. };
  56. enum {
  57. /* PLL_CON0 */
  58. PLL_FBDIV_MASK = 0xfff,
  59. PLL_FBDIV_SHIFT = 0,
  60. /* PLL_CON1 */
  61. PLL_POSTDIV2_SHIFT = 12,
  62. PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
  63. PLL_POSTDIV1_SHIFT = 8,
  64. PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
  65. PLL_REFDIV_MASK = 0x3f,
  66. PLL_REFDIV_SHIFT = 0,
  67. /* PLL_CON2 */
  68. PLL_LOCK_STATUS_SHIFT = 31,
  69. PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
  70. PLL_FRACDIV_MASK = 0xffffff,
  71. PLL_FRACDIV_SHIFT = 0,
  72. /* PLL_CON3 */
  73. PLL_MODE_SHIFT = 8,
  74. PLL_MODE_MASK = 3 << PLL_MODE_SHIFT,
  75. PLL_MODE_SLOW = 0,
  76. PLL_MODE_NORM,
  77. PLL_MODE_DEEP,
  78. PLL_DSMPD_SHIFT = 3,
  79. PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
  80. PLL_INTEGER_MODE = 1,
  81. /* PMUCRU_CLKSEL_CON0 */
  82. PMU_PCLK_DIV_CON_MASK = 0x1f,
  83. PMU_PCLK_DIV_CON_SHIFT = 0,
  84. /* PMUCRU_CLKSEL_CON1 */
  85. SPI3_PLL_SEL_SHIFT = 7,
  86. SPI3_PLL_SEL_MASK = 1 << SPI3_PLL_SEL_SHIFT,
  87. SPI3_PLL_SEL_24M = 0,
  88. SPI3_PLL_SEL_PPLL = 1,
  89. SPI3_DIV_CON_SHIFT = 0x0,
  90. SPI3_DIV_CON_MASK = 0x7f,
  91. /* PMUCRU_CLKSEL_CON2 */
  92. I2C_DIV_CON_MASK = 0x7f,
  93. CLK_I2C8_DIV_CON_SHIFT = 8,
  94. CLK_I2C0_DIV_CON_SHIFT = 0,
  95. /* PMUCRU_CLKSEL_CON3 */
  96. CLK_I2C4_DIV_CON_SHIFT = 0,
  97. /* CLKSEL_CON0 */
  98. ACLKM_CORE_L_DIV_CON_SHIFT = 8,
  99. ACLKM_CORE_L_DIV_CON_MASK = 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
  100. CLK_CORE_L_PLL_SEL_SHIFT = 6,
  101. CLK_CORE_L_PLL_SEL_MASK = 3 << CLK_CORE_L_PLL_SEL_SHIFT,
  102. CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
  103. CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
  104. CLK_CORE_L_PLL_SEL_DPLL = 0x10,
  105. CLK_CORE_L_PLL_SEL_GPLL = 0x11,
  106. CLK_CORE_L_DIV_MASK = 0x1f,
  107. CLK_CORE_L_DIV_SHIFT = 0,
  108. /* CLKSEL_CON1 */
  109. PCLK_DBG_L_DIV_SHIFT = 0x8,
  110. PCLK_DBG_L_DIV_MASK = 0x1f << PCLK_DBG_L_DIV_SHIFT,
  111. ATCLK_CORE_L_DIV_SHIFT = 0,
  112. ATCLK_CORE_L_DIV_MASK = 0x1f << ATCLK_CORE_L_DIV_SHIFT,
  113. /* CLKSEL_CON14 */
  114. PCLK_PERIHP_DIV_CON_SHIFT = 12,
  115. PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
  116. HCLK_PERIHP_DIV_CON_SHIFT = 8,
  117. HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
  118. ACLK_PERIHP_PLL_SEL_SHIFT = 7,
  119. ACLK_PERIHP_PLL_SEL_MASK = 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
  120. ACLK_PERIHP_PLL_SEL_CPLL = 0,
  121. ACLK_PERIHP_PLL_SEL_GPLL = 1,
  122. ACLK_PERIHP_DIV_CON_SHIFT = 0,
  123. ACLK_PERIHP_DIV_CON_MASK = 0x1f,
  124. /* CLKSEL_CON21 */
  125. ACLK_EMMC_PLL_SEL_SHIFT = 7,
  126. ACLK_EMMC_PLL_SEL_MASK = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
  127. ACLK_EMMC_PLL_SEL_GPLL = 0x1,
  128. ACLK_EMMC_DIV_CON_SHIFT = 0,
  129. ACLK_EMMC_DIV_CON_MASK = 0x1f,
  130. /* CLKSEL_CON22 */
  131. CLK_EMMC_PLL_SHIFT = 8,
  132. CLK_EMMC_PLL_MASK = 0x7 << CLK_EMMC_PLL_SHIFT,
  133. CLK_EMMC_PLL_SEL_GPLL = 0x1,
  134. CLK_EMMC_PLL_SEL_24M = 0x5,
  135. CLK_EMMC_DIV_CON_SHIFT = 0,
  136. CLK_EMMC_DIV_CON_MASK = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
  137. /* CLKSEL_CON23 */
  138. PCLK_PERILP0_DIV_CON_SHIFT = 12,
  139. PCLK_PERILP0_DIV_CON_MASK = 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
  140. HCLK_PERILP0_DIV_CON_SHIFT = 8,
  141. HCLK_PERILP0_DIV_CON_MASK = 3 << HCLK_PERILP0_DIV_CON_SHIFT,
  142. ACLK_PERILP0_PLL_SEL_SHIFT = 7,
  143. ACLK_PERILP0_PLL_SEL_MASK = 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
  144. ACLK_PERILP0_PLL_SEL_CPLL = 0,
  145. ACLK_PERILP0_PLL_SEL_GPLL = 1,
  146. ACLK_PERILP0_DIV_CON_SHIFT = 0,
  147. ACLK_PERILP0_DIV_CON_MASK = 0x1f,
  148. /* CLKSEL_CON25 */
  149. PCLK_PERILP1_DIV_CON_SHIFT = 8,
  150. PCLK_PERILP1_DIV_CON_MASK = 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
  151. HCLK_PERILP1_PLL_SEL_SHIFT = 7,
  152. HCLK_PERILP1_PLL_SEL_MASK = 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
  153. HCLK_PERILP1_PLL_SEL_CPLL = 0,
  154. HCLK_PERILP1_PLL_SEL_GPLL = 1,
  155. HCLK_PERILP1_DIV_CON_SHIFT = 0,
  156. HCLK_PERILP1_DIV_CON_MASK = 0x1f,
  157. /* CLKSEL_CON26 */
  158. CLK_SARADC_DIV_CON_SHIFT = 8,
  159. CLK_SARADC_DIV_CON_MASK = GENMASK(15, 8),
  160. CLK_SARADC_DIV_CON_WIDTH = 8,
  161. /* CLKSEL_CON27 */
  162. CLK_TSADC_SEL_X24M = 0x0,
  163. CLK_TSADC_SEL_SHIFT = 15,
  164. CLK_TSADC_SEL_MASK = 1 << CLK_TSADC_SEL_SHIFT,
  165. CLK_TSADC_DIV_CON_SHIFT = 0,
  166. CLK_TSADC_DIV_CON_MASK = 0x3ff,
  167. /* CLKSEL_CON47 & CLKSEL_CON48 */
  168. ACLK_VOP_PLL_SEL_SHIFT = 6,
  169. ACLK_VOP_PLL_SEL_MASK = 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
  170. ACLK_VOP_PLL_SEL_CPLL = 0x1,
  171. ACLK_VOP_DIV_CON_SHIFT = 0,
  172. ACLK_VOP_DIV_CON_MASK = 0x1f << ACLK_VOP_DIV_CON_SHIFT,
  173. /* CLKSEL_CON49 & CLKSEL_CON50 */
  174. DCLK_VOP_DCLK_SEL_SHIFT = 11,
  175. DCLK_VOP_DCLK_SEL_MASK = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
  176. DCLK_VOP_DCLK_SEL_DIVOUT = 0,
  177. DCLK_VOP_PLL_SEL_SHIFT = 8,
  178. DCLK_VOP_PLL_SEL_MASK = 3 << DCLK_VOP_PLL_SEL_SHIFT,
  179. DCLK_VOP_PLL_SEL_VPLL = 0,
  180. DCLK_VOP_DIV_CON_MASK = 0xff,
  181. DCLK_VOP_DIV_CON_SHIFT = 0,
  182. /* CLKSEL_CON58 */
  183. CLK_SPI_PLL_SEL_WIDTH = 1,
  184. CLK_SPI_PLL_SEL_MASK = ((1 < CLK_SPI_PLL_SEL_WIDTH) - 1),
  185. CLK_SPI_PLL_SEL_CPLL = 0,
  186. CLK_SPI_PLL_SEL_GPLL = 1,
  187. CLK_SPI_PLL_DIV_CON_WIDTH = 7,
  188. CLK_SPI_PLL_DIV_CON_MASK = ((1 << CLK_SPI_PLL_DIV_CON_WIDTH) - 1),
  189. CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
  190. CLK_SPI5_PLL_SEL_SHIFT = 15,
  191. /* CLKSEL_CON59 */
  192. CLK_SPI1_PLL_SEL_SHIFT = 15,
  193. CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
  194. CLK_SPI0_PLL_SEL_SHIFT = 7,
  195. CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
  196. /* CLKSEL_CON60 */
  197. CLK_SPI4_PLL_SEL_SHIFT = 15,
  198. CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
  199. CLK_SPI2_PLL_SEL_SHIFT = 7,
  200. CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
  201. /* CLKSEL_CON61 */
  202. CLK_I2C_PLL_SEL_MASK = 1,
  203. CLK_I2C_PLL_SEL_CPLL = 0,
  204. CLK_I2C_PLL_SEL_GPLL = 1,
  205. CLK_I2C5_PLL_SEL_SHIFT = 15,
  206. CLK_I2C5_DIV_CON_SHIFT = 8,
  207. CLK_I2C1_PLL_SEL_SHIFT = 7,
  208. CLK_I2C1_DIV_CON_SHIFT = 0,
  209. /* CLKSEL_CON62 */
  210. CLK_I2C6_PLL_SEL_SHIFT = 15,
  211. CLK_I2C6_DIV_CON_SHIFT = 8,
  212. CLK_I2C2_PLL_SEL_SHIFT = 7,
  213. CLK_I2C2_DIV_CON_SHIFT = 0,
  214. /* CLKSEL_CON63 */
  215. CLK_I2C7_PLL_SEL_SHIFT = 15,
  216. CLK_I2C7_DIV_CON_SHIFT = 8,
  217. CLK_I2C3_PLL_SEL_SHIFT = 7,
  218. CLK_I2C3_DIV_CON_SHIFT = 0,
  219. /* CRU_SOFTRST_CON4 */
  220. RESETN_DDR0_REQ_SHIFT = 8,
  221. RESETN_DDR0_REQ_MASK = 1 << RESETN_DDR0_REQ_SHIFT,
  222. RESETN_DDRPHY0_REQ_SHIFT = 9,
  223. RESETN_DDRPHY0_REQ_MASK = 1 << RESETN_DDRPHY0_REQ_SHIFT,
  224. RESETN_DDR1_REQ_SHIFT = 12,
  225. RESETN_DDR1_REQ_MASK = 1 << RESETN_DDR1_REQ_SHIFT,
  226. RESETN_DDRPHY1_REQ_SHIFT = 13,
  227. RESETN_DDRPHY1_REQ_MASK = 1 << RESETN_DDRPHY1_REQ_SHIFT,
  228. };
  229. #define VCO_MAX_KHZ (3200 * (MHz / KHz))
  230. #define VCO_MIN_KHZ (800 * (MHz / KHz))
  231. #define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
  232. #define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
  233. /*
  234. * the div restructions of pll in integer mode, these are defined in
  235. * * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
  236. */
  237. #define PLL_DIV_MIN 16
  238. #define PLL_DIV_MAX 3200
  239. /*
  240. * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
  241. * Formulas also embedded within the Fractional PLL Verilog model:
  242. * If DSMPD = 1 (DSM is disabled, "integer mode")
  243. * FOUTVCO = FREF / REFDIV * FBDIV
  244. * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
  245. * Where:
  246. * FOUTVCO = Fractional PLL non-divided output frequency
  247. * FOUTPOSTDIV = Fractional PLL divided output frequency
  248. * (output of second post divider)
  249. * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
  250. * REFDIV = Fractional PLL input reference clock divider
  251. * FBDIV = Integer value programmed into feedback divide
  252. *
  253. */
  254. static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
  255. {
  256. /* All 8 PLLs have same VCO and output frequency range restrictions. */
  257. u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
  258. u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
  259. debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
  260. "postdiv2=%d, vco=%u khz, output=%u khz\n",
  261. pll_con, div->fbdiv, div->refdiv, div->postdiv1,
  262. div->postdiv2, vco_khz, output_khz);
  263. assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
  264. output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
  265. div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
  266. /*
  267. * When power on or changing PLL setting,
  268. * we must force PLL into slow mode to ensure output stable clock.
  269. */
  270. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  271. PLL_MODE_SLOW << PLL_MODE_SHIFT);
  272. /* use integer mode */
  273. rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
  274. PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
  275. rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
  276. div->fbdiv << PLL_FBDIV_SHIFT);
  277. rk_clrsetreg(&pll_con[1],
  278. PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
  279. PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
  280. (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
  281. (div->postdiv1 << PLL_POSTDIV1_SHIFT) |
  282. (div->refdiv << PLL_REFDIV_SHIFT));
  283. /* waiting for pll lock */
  284. while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
  285. udelay(1);
  286. /* pll enter normal mode */
  287. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  288. PLL_MODE_NORM << PLL_MODE_SHIFT);
  289. }
  290. static int pll_para_config(u32 freq_hz, struct pll_div *div)
  291. {
  292. u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
  293. u32 postdiv1, postdiv2 = 1;
  294. u32 fref_khz;
  295. u32 diff_khz, best_diff_khz;
  296. const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
  297. const u32 max_postdiv1 = 7, max_postdiv2 = 7;
  298. u32 vco_khz;
  299. u32 freq_khz = freq_hz / KHz;
  300. if (!freq_hz) {
  301. printf("%s: the frequency can't be 0 Hz\n", __func__);
  302. return -1;
  303. }
  304. postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
  305. if (postdiv1 > max_postdiv1) {
  306. postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
  307. postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
  308. }
  309. vco_khz = freq_khz * postdiv1 * postdiv2;
  310. if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
  311. postdiv2 > max_postdiv2) {
  312. printf("%s: Cannot find out a supported VCO"
  313. " for Frequency (%uHz).\n", __func__, freq_hz);
  314. return -1;
  315. }
  316. div->postdiv1 = postdiv1;
  317. div->postdiv2 = postdiv2;
  318. best_diff_khz = vco_khz;
  319. for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
  320. fref_khz = ref_khz / refdiv;
  321. fbdiv = vco_khz / fref_khz;
  322. if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
  323. continue;
  324. diff_khz = vco_khz - fbdiv * fref_khz;
  325. if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
  326. fbdiv++;
  327. diff_khz = fref_khz - diff_khz;
  328. }
  329. if (diff_khz >= best_diff_khz)
  330. continue;
  331. best_diff_khz = diff_khz;
  332. div->refdiv = refdiv;
  333. div->fbdiv = fbdiv;
  334. }
  335. if (best_diff_khz > 4 * (MHz/KHz)) {
  336. printf("%s: Failed to match output frequency %u, "
  337. "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
  338. best_diff_khz * KHz);
  339. return -1;
  340. }
  341. return 0;
  342. }
  343. void rk3399_configure_cpu(struct rk3399_cru *cru,
  344. enum apll_l_frequencies apll_l_freq)
  345. {
  346. u32 aclkm_div;
  347. u32 pclk_dbg_div;
  348. u32 atclk_div;
  349. rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
  350. aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
  351. assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
  352. aclkm_div < 0x1f);
  353. pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
  354. assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
  355. pclk_dbg_div < 0x1f);
  356. atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
  357. assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
  358. atclk_div < 0x1f);
  359. rk_clrsetreg(&cru->clksel_con[0],
  360. ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
  361. CLK_CORE_L_DIV_MASK,
  362. aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
  363. CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
  364. 0 << CLK_CORE_L_DIV_SHIFT);
  365. rk_clrsetreg(&cru->clksel_con[1],
  366. PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
  367. pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
  368. atclk_div << ATCLK_CORE_L_DIV_SHIFT);
  369. }
  370. #define I2C_CLK_REG_MASK(bus) \
  371. (I2C_DIV_CON_MASK << \
  372. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  373. CLK_I2C_PLL_SEL_MASK << \
  374. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  375. #define I2C_CLK_REG_VALUE(bus, clk_div) \
  376. ((clk_div - 1) << \
  377. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  378. CLK_I2C_PLL_SEL_GPLL << \
  379. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  380. #define I2C_CLK_DIV_VALUE(con, bus) \
  381. (con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \
  382. I2C_DIV_CON_MASK;
  383. #define I2C_PMUCLK_REG_MASK(bus) \
  384. (I2C_DIV_CON_MASK << \
  385. CLK_I2C ##bus## _DIV_CON_SHIFT)
  386. #define I2C_PMUCLK_REG_VALUE(bus, clk_div) \
  387. ((clk_div - 1) << \
  388. CLK_I2C ##bus## _DIV_CON_SHIFT)
  389. static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id)
  390. {
  391. u32 div, con;
  392. switch (clk_id) {
  393. case SCLK_I2C1:
  394. con = readl(&cru->clksel_con[61]);
  395. div = I2C_CLK_DIV_VALUE(con, 1);
  396. break;
  397. case SCLK_I2C2:
  398. con = readl(&cru->clksel_con[62]);
  399. div = I2C_CLK_DIV_VALUE(con, 2);
  400. break;
  401. case SCLK_I2C3:
  402. con = readl(&cru->clksel_con[63]);
  403. div = I2C_CLK_DIV_VALUE(con, 3);
  404. break;
  405. case SCLK_I2C5:
  406. con = readl(&cru->clksel_con[61]);
  407. div = I2C_CLK_DIV_VALUE(con, 5);
  408. break;
  409. case SCLK_I2C6:
  410. con = readl(&cru->clksel_con[62]);
  411. div = I2C_CLK_DIV_VALUE(con, 6);
  412. break;
  413. case SCLK_I2C7:
  414. con = readl(&cru->clksel_con[63]);
  415. div = I2C_CLK_DIV_VALUE(con, 7);
  416. break;
  417. default:
  418. printf("do not support this i2c bus\n");
  419. return -EINVAL;
  420. }
  421. return DIV_TO_RATE(GPLL_HZ, div);
  422. }
  423. static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  424. {
  425. int src_clk_div;
  426. /* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
  427. src_clk_div = GPLL_HZ / hz;
  428. assert(src_clk_div - 1 < 127);
  429. switch (clk_id) {
  430. case SCLK_I2C1:
  431. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
  432. I2C_CLK_REG_VALUE(1, src_clk_div));
  433. break;
  434. case SCLK_I2C2:
  435. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
  436. I2C_CLK_REG_VALUE(2, src_clk_div));
  437. break;
  438. case SCLK_I2C3:
  439. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
  440. I2C_CLK_REG_VALUE(3, src_clk_div));
  441. break;
  442. case SCLK_I2C5:
  443. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
  444. I2C_CLK_REG_VALUE(5, src_clk_div));
  445. break;
  446. case SCLK_I2C6:
  447. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
  448. I2C_CLK_REG_VALUE(6, src_clk_div));
  449. break;
  450. case SCLK_I2C7:
  451. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
  452. I2C_CLK_REG_VALUE(7, src_clk_div));
  453. break;
  454. default:
  455. printf("do not support this i2c bus\n");
  456. return -EINVAL;
  457. }
  458. return rk3399_i2c_get_clk(cru, clk_id);
  459. }
  460. /*
  461. * RK3399 SPI clocks have a common divider-width (7 bits) and a single bit
  462. * to select either CPLL or GPLL as the clock-parent. The location within
  463. * the enclosing CLKSEL_CON (i.e. div_shift and sel_shift) are variable.
  464. */
  465. struct spi_clkreg {
  466. uint8_t reg; /* CLKSEL_CON[reg] register in CRU */
  467. uint8_t div_shift;
  468. uint8_t sel_shift;
  469. };
  470. /*
  471. * The entries are numbered relative to their offset from SCLK_SPI0.
  472. *
  473. * Note that SCLK_SPI3 (which is configured via PMUCRU and requires different
  474. * logic is not supported).
  475. */
  476. static const struct spi_clkreg spi_clkregs[] = {
  477. [0] = { .reg = 59,
  478. .div_shift = CLK_SPI0_PLL_DIV_CON_SHIFT,
  479. .sel_shift = CLK_SPI0_PLL_SEL_SHIFT, },
  480. [1] = { .reg = 59,
  481. .div_shift = CLK_SPI1_PLL_DIV_CON_SHIFT,
  482. .sel_shift = CLK_SPI1_PLL_SEL_SHIFT, },
  483. [2] = { .reg = 60,
  484. .div_shift = CLK_SPI2_PLL_DIV_CON_SHIFT,
  485. .sel_shift = CLK_SPI2_PLL_SEL_SHIFT, },
  486. [3] = { .reg = 60,
  487. .div_shift = CLK_SPI4_PLL_DIV_CON_SHIFT,
  488. .sel_shift = CLK_SPI4_PLL_SEL_SHIFT, },
  489. [4] = { .reg = 58,
  490. .div_shift = CLK_SPI5_PLL_DIV_CON_SHIFT,
  491. .sel_shift = CLK_SPI5_PLL_SEL_SHIFT, },
  492. };
  493. static ulong rk3399_spi_get_clk(struct rk3399_cru *cru, ulong clk_id)
  494. {
  495. const struct spi_clkreg *spiclk = NULL;
  496. u32 div, val;
  497. switch (clk_id) {
  498. case SCLK_SPI0 ... SCLK_SPI5:
  499. spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
  500. break;
  501. default:
  502. pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
  503. return -EINVAL;
  504. }
  505. val = readl(&cru->clksel_con[spiclk->reg]);
  506. div = bitfield_extract(val, spiclk->div_shift,
  507. CLK_SPI_PLL_DIV_CON_WIDTH);
  508. return DIV_TO_RATE(GPLL_HZ, div);
  509. }
  510. static ulong rk3399_spi_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  511. {
  512. const struct spi_clkreg *spiclk = NULL;
  513. int src_clk_div;
  514. src_clk_div = DIV_ROUND_UP(GPLL_HZ, hz) - 1;
  515. assert(src_clk_div < 128);
  516. switch (clk_id) {
  517. case SCLK_SPI1 ... SCLK_SPI5:
  518. spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
  519. break;
  520. default:
  521. pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
  522. return -EINVAL;
  523. }
  524. rk_clrsetreg(&cru->clksel_con[spiclk->reg],
  525. ((CLK_SPI_PLL_DIV_CON_MASK << spiclk->div_shift) |
  526. (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)),
  527. ((src_clk_div << spiclk->div_shift) |
  528. (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)));
  529. return rk3399_spi_get_clk(cru, clk_id);
  530. }
  531. static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz)
  532. {
  533. struct pll_div vpll_config = {0};
  534. int aclk_vop = 198*MHz;
  535. void *aclkreg_addr, *dclkreg_addr;
  536. u32 div;
  537. switch (clk_id) {
  538. case DCLK_VOP0:
  539. aclkreg_addr = &cru->clksel_con[47];
  540. dclkreg_addr = &cru->clksel_con[49];
  541. break;
  542. case DCLK_VOP1:
  543. aclkreg_addr = &cru->clksel_con[48];
  544. dclkreg_addr = &cru->clksel_con[50];
  545. break;
  546. default:
  547. return -EINVAL;
  548. }
  549. /* vop aclk source clk: cpll */
  550. div = CPLL_HZ / aclk_vop;
  551. assert(div - 1 < 32);
  552. rk_clrsetreg(aclkreg_addr,
  553. ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
  554. ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
  555. (div - 1) << ACLK_VOP_DIV_CON_SHIFT);
  556. /* vop dclk source from vpll, and equals to vpll(means div == 1) */
  557. if (pll_para_config(hz, &vpll_config))
  558. return -1;
  559. rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
  560. rk_clrsetreg(dclkreg_addr,
  561. DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK|
  562. DCLK_VOP_DIV_CON_MASK,
  563. DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
  564. DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
  565. (1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
  566. return hz;
  567. }
  568. static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id)
  569. {
  570. u32 div, con;
  571. switch (clk_id) {
  572. case HCLK_SDMMC:
  573. case SCLK_SDMMC:
  574. con = readl(&cru->clksel_con[16]);
  575. /* dwmmc controller have internal div 2 */
  576. div = 2;
  577. break;
  578. case SCLK_EMMC:
  579. con = readl(&cru->clksel_con[21]);
  580. div = 1;
  581. break;
  582. default:
  583. return -EINVAL;
  584. }
  585. div *= (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
  586. if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
  587. == CLK_EMMC_PLL_SEL_24M)
  588. return DIV_TO_RATE(OSC_HZ, div);
  589. else
  590. return DIV_TO_RATE(GPLL_HZ, div);
  591. }
  592. static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru,
  593. ulong clk_id, ulong set_rate)
  594. {
  595. int src_clk_div;
  596. int aclk_emmc = 198*MHz;
  597. switch (clk_id) {
  598. case HCLK_SDMMC:
  599. case SCLK_SDMMC:
  600. /* Select clk_sdmmc source from GPLL by default */
  601. /* mmc clock defaulg div 2 internal, provide double in cru */
  602. src_clk_div = DIV_ROUND_UP(GPLL_HZ / 2, set_rate);
  603. if (src_clk_div > 128) {
  604. /* use 24MHz source for 400KHz clock */
  605. src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, set_rate);
  606. assert(src_clk_div - 1 < 128);
  607. rk_clrsetreg(&cru->clksel_con[16],
  608. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  609. CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
  610. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  611. } else {
  612. rk_clrsetreg(&cru->clksel_con[16],
  613. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  614. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  615. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  616. }
  617. break;
  618. case SCLK_EMMC:
  619. /* Select aclk_emmc source from GPLL */
  620. src_clk_div = DIV_ROUND_UP(GPLL_HZ , aclk_emmc);
  621. assert(src_clk_div - 1 < 32);
  622. rk_clrsetreg(&cru->clksel_con[21],
  623. ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
  624. ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
  625. (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
  626. /* Select clk_emmc source from GPLL too */
  627. src_clk_div = DIV_ROUND_UP(GPLL_HZ, set_rate);
  628. assert(src_clk_div - 1 < 128);
  629. rk_clrsetreg(&cru->clksel_con[22],
  630. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  631. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  632. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  633. break;
  634. default:
  635. return -EINVAL;
  636. }
  637. return rk3399_mmc_get_clk(cru, clk_id);
  638. }
  639. #define PMUSGRF_DDR_RGN_CON16 0xff330040
  640. static ulong rk3399_ddr_set_clk(struct rk3399_cru *cru,
  641. ulong set_rate)
  642. {
  643. struct pll_div dpll_cfg;
  644. /* IC ECO bug, need to set this register */
  645. writel(0xc000c000, PMUSGRF_DDR_RGN_CON16);
  646. /* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
  647. switch (set_rate) {
  648. case 200*MHz:
  649. dpll_cfg = (struct pll_div)
  650. {.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1};
  651. break;
  652. case 300*MHz:
  653. dpll_cfg = (struct pll_div)
  654. {.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
  655. break;
  656. case 666*MHz:
  657. dpll_cfg = (struct pll_div)
  658. {.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
  659. break;
  660. case 800*MHz:
  661. dpll_cfg = (struct pll_div)
  662. {.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
  663. break;
  664. case 933*MHz:
  665. dpll_cfg = (struct pll_div)
  666. {.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1};
  667. break;
  668. default:
  669. pr_err("Unsupported SDRAM frequency!,%ld\n", set_rate);
  670. }
  671. rkclk_set_pll(&cru->dpll_con[0], &dpll_cfg);
  672. return set_rate;
  673. }
  674. static ulong rk3399_saradc_get_clk(struct rk3399_cru *cru)
  675. {
  676. u32 div, val;
  677. val = readl(&cru->clksel_con[26]);
  678. div = bitfield_extract(val, CLK_SARADC_DIV_CON_SHIFT,
  679. CLK_SARADC_DIV_CON_WIDTH);
  680. return DIV_TO_RATE(OSC_HZ, div);
  681. }
  682. static ulong rk3399_saradc_set_clk(struct rk3399_cru *cru, uint hz)
  683. {
  684. int src_clk_div;
  685. src_clk_div = DIV_ROUND_UP(OSC_HZ, hz) - 1;
  686. assert(src_clk_div < 128);
  687. rk_clrsetreg(&cru->clksel_con[26],
  688. CLK_SARADC_DIV_CON_MASK,
  689. src_clk_div << CLK_SARADC_DIV_CON_SHIFT);
  690. return rk3399_saradc_get_clk(cru);
  691. }
  692. static ulong rk3399_clk_get_rate(struct clk *clk)
  693. {
  694. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  695. ulong rate = 0;
  696. switch (clk->id) {
  697. case 0 ... 63:
  698. return 0;
  699. case HCLK_SDMMC:
  700. case SCLK_SDMMC:
  701. case SCLK_EMMC:
  702. rate = rk3399_mmc_get_clk(priv->cru, clk->id);
  703. break;
  704. case SCLK_I2C1:
  705. case SCLK_I2C2:
  706. case SCLK_I2C3:
  707. case SCLK_I2C5:
  708. case SCLK_I2C6:
  709. case SCLK_I2C7:
  710. rate = rk3399_i2c_get_clk(priv->cru, clk->id);
  711. break;
  712. case SCLK_SPI0...SCLK_SPI5:
  713. rate = rk3399_spi_get_clk(priv->cru, clk->id);
  714. break;
  715. case SCLK_UART0:
  716. case SCLK_UART2:
  717. return 24000000;
  718. break;
  719. case PCLK_HDMI_CTRL:
  720. break;
  721. case DCLK_VOP0:
  722. case DCLK_VOP1:
  723. break;
  724. case PCLK_EFUSE1024NS:
  725. break;
  726. case SCLK_SARADC:
  727. rate = rk3399_saradc_get_clk(priv->cru);
  728. break;
  729. default:
  730. return -ENOENT;
  731. }
  732. return rate;
  733. }
  734. static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
  735. {
  736. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  737. ulong ret = 0;
  738. switch (clk->id) {
  739. case 0 ... 63:
  740. return 0;
  741. case HCLK_SDMMC:
  742. case SCLK_SDMMC:
  743. case SCLK_EMMC:
  744. ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
  745. break;
  746. case SCLK_MAC:
  747. /* nothing to do, as this is an external clock */
  748. ret = rate;
  749. break;
  750. case SCLK_I2C1:
  751. case SCLK_I2C2:
  752. case SCLK_I2C3:
  753. case SCLK_I2C5:
  754. case SCLK_I2C6:
  755. case SCLK_I2C7:
  756. ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
  757. break;
  758. case SCLK_SPI0...SCLK_SPI5:
  759. ret = rk3399_spi_set_clk(priv->cru, clk->id, rate);
  760. break;
  761. case PCLK_HDMI_CTRL:
  762. case PCLK_VIO_GRF:
  763. /* the PCLK gates for video are enabled by default */
  764. break;
  765. case DCLK_VOP0:
  766. case DCLK_VOP1:
  767. ret = rk3399_vop_set_clk(priv->cru, clk->id, rate);
  768. break;
  769. case SCLK_DDRCLK:
  770. ret = rk3399_ddr_set_clk(priv->cru, rate);
  771. break;
  772. case PCLK_EFUSE1024NS:
  773. break;
  774. case SCLK_SARADC:
  775. ret = rk3399_saradc_set_clk(priv->cru, rate);
  776. break;
  777. default:
  778. return -ENOENT;
  779. }
  780. return ret;
  781. }
  782. static int rk3399_clk_enable(struct clk *clk)
  783. {
  784. switch (clk->id) {
  785. case HCLK_HOST0:
  786. case HCLK_HOST0_ARB:
  787. case HCLK_HOST1:
  788. case HCLK_HOST1_ARB:
  789. return 0;
  790. }
  791. debug("%s: unsupported clk %ld\n", __func__, clk->id);
  792. return -ENOENT;
  793. }
  794. static struct clk_ops rk3399_clk_ops = {
  795. .get_rate = rk3399_clk_get_rate,
  796. .set_rate = rk3399_clk_set_rate,
  797. .enable = rk3399_clk_enable,
  798. };
  799. #ifdef CONFIG_SPL_BUILD
  800. static void rkclk_init(struct rk3399_cru *cru)
  801. {
  802. u32 aclk_div;
  803. u32 hclk_div;
  804. u32 pclk_div;
  805. rk3399_configure_cpu(cru, APLL_L_600_MHZ);
  806. /*
  807. * some cru registers changed by bootrom, we'd better reset them to
  808. * reset/default values described in TRM to avoid confusion in kernel.
  809. * Please consider these three lines as a fix of bootrom bug.
  810. */
  811. rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
  812. rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
  813. rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
  814. /* configure gpll cpll */
  815. rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
  816. rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
  817. /* configure perihp aclk, hclk, pclk */
  818. aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
  819. assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  820. hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
  821. assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
  822. PERIHP_ACLK_HZ && (hclk_div < 0x4));
  823. pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
  824. assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
  825. PERIHP_ACLK_HZ && (pclk_div < 0x7));
  826. rk_clrsetreg(&cru->clksel_con[14],
  827. PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
  828. ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
  829. pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
  830. hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
  831. ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
  832. aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
  833. /* configure perilp0 aclk, hclk, pclk */
  834. aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
  835. assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  836. hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
  837. assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
  838. PERILP0_ACLK_HZ && (hclk_div < 0x4));
  839. pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
  840. assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
  841. PERILP0_ACLK_HZ && (pclk_div < 0x7));
  842. rk_clrsetreg(&cru->clksel_con[23],
  843. PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
  844. ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
  845. pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
  846. hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
  847. ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
  848. aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
  849. /* perilp1 hclk select gpll as source */
  850. hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
  851. assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
  852. GPLL_HZ && (hclk_div < 0x1f));
  853. pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
  854. assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
  855. PERILP1_HCLK_HZ && (hclk_div < 0x7));
  856. rk_clrsetreg(&cru->clksel_con[25],
  857. PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
  858. HCLK_PERILP1_PLL_SEL_MASK,
  859. pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
  860. hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
  861. HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
  862. }
  863. #endif
  864. static int rk3399_clk_probe(struct udevice *dev)
  865. {
  866. #ifdef CONFIG_SPL_BUILD
  867. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  868. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  869. struct rk3399_clk_plat *plat = dev_get_platdata(dev);
  870. priv->cru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
  871. #endif
  872. rkclk_init(priv->cru);
  873. #endif
  874. return 0;
  875. }
  876. static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
  877. {
  878. #if !CONFIG_IS_ENABLED(OF_PLATDATA)
  879. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  880. priv->cru = dev_read_addr_ptr(dev);
  881. #endif
  882. return 0;
  883. }
  884. static int rk3399_clk_bind(struct udevice *dev)
  885. {
  886. int ret;
  887. struct udevice *sys_child;
  888. struct sysreset_reg *priv;
  889. /* The reset driver does not have a device node, so bind it here */
  890. ret = device_bind_driver(dev, "rockchip_sysreset", "sysreset",
  891. &sys_child);
  892. if (ret) {
  893. debug("Warning: No sysreset driver: ret=%d\n", ret);
  894. } else {
  895. priv = malloc(sizeof(struct sysreset_reg));
  896. priv->glb_srst_fst_value = offsetof(struct rk3399_cru,
  897. glb_srst_fst_value);
  898. priv->glb_srst_snd_value = offsetof(struct rk3399_cru,
  899. glb_srst_snd_value);
  900. sys_child->priv = priv;
  901. }
  902. return 0;
  903. }
  904. static const struct udevice_id rk3399_clk_ids[] = {
  905. { .compatible = "rockchip,rk3399-cru" },
  906. { }
  907. };
  908. U_BOOT_DRIVER(clk_rk3399) = {
  909. .name = "rockchip_rk3399_cru",
  910. .id = UCLASS_CLK,
  911. .of_match = rk3399_clk_ids,
  912. .priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
  913. .ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
  914. .ops = &rk3399_clk_ops,
  915. .bind = rk3399_clk_bind,
  916. .probe = rk3399_clk_probe,
  917. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  918. .platdata_auto_alloc_size = sizeof(struct rk3399_clk_plat),
  919. #endif
  920. };
  921. static ulong rk3399_i2c_get_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id)
  922. {
  923. u32 div, con;
  924. switch (clk_id) {
  925. case SCLK_I2C0_PMU:
  926. con = readl(&pmucru->pmucru_clksel[2]);
  927. div = I2C_CLK_DIV_VALUE(con, 0);
  928. break;
  929. case SCLK_I2C4_PMU:
  930. con = readl(&pmucru->pmucru_clksel[3]);
  931. div = I2C_CLK_DIV_VALUE(con, 4);
  932. break;
  933. case SCLK_I2C8_PMU:
  934. con = readl(&pmucru->pmucru_clksel[2]);
  935. div = I2C_CLK_DIV_VALUE(con, 8);
  936. break;
  937. default:
  938. printf("do not support this i2c bus\n");
  939. return -EINVAL;
  940. }
  941. return DIV_TO_RATE(PPLL_HZ, div);
  942. }
  943. static ulong rk3399_i2c_set_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id,
  944. uint hz)
  945. {
  946. int src_clk_div;
  947. src_clk_div = PPLL_HZ / hz;
  948. assert(src_clk_div - 1 < 127);
  949. switch (clk_id) {
  950. case SCLK_I2C0_PMU:
  951. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(0),
  952. I2C_PMUCLK_REG_VALUE(0, src_clk_div));
  953. break;
  954. case SCLK_I2C4_PMU:
  955. rk_clrsetreg(&pmucru->pmucru_clksel[3], I2C_PMUCLK_REG_MASK(4),
  956. I2C_PMUCLK_REG_VALUE(4, src_clk_div));
  957. break;
  958. case SCLK_I2C8_PMU:
  959. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(8),
  960. I2C_PMUCLK_REG_VALUE(8, src_clk_div));
  961. break;
  962. default:
  963. printf("do not support this i2c bus\n");
  964. return -EINVAL;
  965. }
  966. return DIV_TO_RATE(PPLL_HZ, src_clk_div);
  967. }
  968. static ulong rk3399_pwm_get_clk(struct rk3399_pmucru *pmucru)
  969. {
  970. u32 div, con;
  971. /* PWM closk rate is same as pclk_pmu */
  972. con = readl(&pmucru->pmucru_clksel[0]);
  973. div = con & PMU_PCLK_DIV_CON_MASK;
  974. return DIV_TO_RATE(PPLL_HZ, div);
  975. }
  976. static ulong rk3399_pmuclk_get_rate(struct clk *clk)
  977. {
  978. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  979. ulong rate = 0;
  980. switch (clk->id) {
  981. case PCLK_RKPWM_PMU:
  982. rate = rk3399_pwm_get_clk(priv->pmucru);
  983. break;
  984. case SCLK_I2C0_PMU:
  985. case SCLK_I2C4_PMU:
  986. case SCLK_I2C8_PMU:
  987. rate = rk3399_i2c_get_pmuclk(priv->pmucru, clk->id);
  988. break;
  989. default:
  990. return -ENOENT;
  991. }
  992. return rate;
  993. }
  994. static ulong rk3399_pmuclk_set_rate(struct clk *clk, ulong rate)
  995. {
  996. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  997. ulong ret = 0;
  998. switch (clk->id) {
  999. case SCLK_I2C0_PMU:
  1000. case SCLK_I2C4_PMU:
  1001. case SCLK_I2C8_PMU:
  1002. ret = rk3399_i2c_set_pmuclk(priv->pmucru, clk->id, rate);
  1003. break;
  1004. default:
  1005. return -ENOENT;
  1006. }
  1007. return ret;
  1008. }
  1009. static struct clk_ops rk3399_pmuclk_ops = {
  1010. .get_rate = rk3399_pmuclk_get_rate,
  1011. .set_rate = rk3399_pmuclk_set_rate,
  1012. };
  1013. #ifndef CONFIG_SPL_BUILD
  1014. static void pmuclk_init(struct rk3399_pmucru *pmucru)
  1015. {
  1016. u32 pclk_div;
  1017. /* configure pmu pll(ppll) */
  1018. rkclk_set_pll(&pmucru->ppll_con[0], &ppll_init_cfg);
  1019. /* configure pmu pclk */
  1020. pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
  1021. rk_clrsetreg(&pmucru->pmucru_clksel[0],
  1022. PMU_PCLK_DIV_CON_MASK,
  1023. pclk_div << PMU_PCLK_DIV_CON_SHIFT);
  1024. }
  1025. #endif
  1026. static int rk3399_pmuclk_probe(struct udevice *dev)
  1027. {
  1028. #if CONFIG_IS_ENABLED(OF_PLATDATA) || !defined(CONFIG_SPL_BUILD)
  1029. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  1030. #endif
  1031. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  1032. struct rk3399_pmuclk_plat *plat = dev_get_platdata(dev);
  1033. priv->pmucru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
  1034. #endif
  1035. #ifndef CONFIG_SPL_BUILD
  1036. pmuclk_init(priv->pmucru);
  1037. #endif
  1038. return 0;
  1039. }
  1040. static int rk3399_pmuclk_ofdata_to_platdata(struct udevice *dev)
  1041. {
  1042. #if !CONFIG_IS_ENABLED(OF_PLATDATA)
  1043. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  1044. priv->pmucru = dev_read_addr_ptr(dev);
  1045. #endif
  1046. return 0;
  1047. }
  1048. static const struct udevice_id rk3399_pmuclk_ids[] = {
  1049. { .compatible = "rockchip,rk3399-pmucru" },
  1050. { }
  1051. };
  1052. U_BOOT_DRIVER(rockchip_rk3399_pmuclk) = {
  1053. .name = "rockchip_rk3399_pmucru",
  1054. .id = UCLASS_CLK,
  1055. .of_match = rk3399_pmuclk_ids,
  1056. .priv_auto_alloc_size = sizeof(struct rk3399_pmuclk_priv),
  1057. .ofdata_to_platdata = rk3399_pmuclk_ofdata_to_platdata,
  1058. .ops = &rk3399_pmuclk_ops,
  1059. .probe = rk3399_pmuclk_probe,
  1060. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  1061. .platdata_auto_alloc_size = sizeof(struct rk3399_pmuclk_plat),
  1062. #endif
  1063. };