clock_manager.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
  1. /*
  2. * Copyright (C) 2013 Altera Corporation <www.altera.com>
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <asm/io.h>
  8. #include <asm/arch/clock_manager.h>
  9. DECLARE_GLOBAL_DATA_PTR;
  10. static const struct socfpga_clock_manager *clock_manager_base =
  11. (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
  12. static void cm_wait_for_lock(uint32_t mask)
  13. {
  14. register uint32_t inter_val;
  15. uint32_t retry = 0;
  16. do {
  17. inter_val = readl(&clock_manager_base->inter) & mask;
  18. if (inter_val == mask)
  19. retry++;
  20. else
  21. retry = 0;
  22. if (retry >= 10)
  23. break;
  24. } while (1);
  25. }
  26. /* function to poll in the fsm busy bit */
  27. static void cm_wait_for_fsm(void)
  28. {
  29. while (readl(&clock_manager_base->stat) & CLKMGR_STAT_BUSY)
  30. ;
  31. }
  32. /*
  33. * function to write the bypass register which requires a poll of the
  34. * busy bit
  35. */
  36. static void cm_write_bypass(uint32_t val)
  37. {
  38. writel(val, &clock_manager_base->bypass);
  39. cm_wait_for_fsm();
  40. }
  41. /* function to write the ctrl register which requires a poll of the busy bit */
  42. static void cm_write_ctrl(uint32_t val)
  43. {
  44. writel(val, &clock_manager_base->ctrl);
  45. cm_wait_for_fsm();
  46. }
  47. /* function to write a clock register that has phase information */
  48. static void cm_write_with_phase(uint32_t value,
  49. uint32_t reg_address, uint32_t mask)
  50. {
  51. /* poll until phase is zero */
  52. while (readl(reg_address) & mask)
  53. ;
  54. writel(value, reg_address);
  55. while (readl(reg_address) & mask)
  56. ;
  57. }
  58. /*
  59. * Setup clocks while making no assumptions about previous state of the clocks.
  60. *
  61. * Start by being paranoid and gate all sw managed clocks
  62. * Put all plls in bypass
  63. * Put all plls VCO registers back to reset value (bandgap power down).
  64. * Put peripheral and main pll src to reset value to avoid glitch.
  65. * Delay 5 us.
  66. * Deassert bandgap power down and set numerator and denominator
  67. * Start 7 us timer.
  68. * set internal dividers
  69. * Wait for 7 us timer.
  70. * Enable plls
  71. * Set external dividers while plls are locking
  72. * Wait for pll lock
  73. * Assert/deassert outreset all.
  74. * Take all pll's out of bypass
  75. * Clear safe mode
  76. * set source main and peripheral clocks
  77. * Ungate clocks
  78. */
  79. void cm_basic_init(const cm_config_t *cfg)
  80. {
  81. uint32_t start, timeout;
  82. /* Start by being paranoid and gate all sw managed clocks */
  83. /*
  84. * We need to disable nandclk
  85. * and then do another apb access before disabling
  86. * gatting off the rest of the periperal clocks.
  87. */
  88. writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK &
  89. readl(&clock_manager_base->per_pll.en),
  90. &clock_manager_base->per_pll.en);
  91. /* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */
  92. writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK |
  93. CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK |
  94. CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK |
  95. CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK |
  96. CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK |
  97. CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK,
  98. &clock_manager_base->main_pll.en);
  99. writel(0, &clock_manager_base->sdr_pll.en);
  100. /* now we can gate off the rest of the peripheral clocks */
  101. writel(0, &clock_manager_base->per_pll.en);
  102. /* Put all plls in bypass */
  103. cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL |
  104. CLKMGR_BYPASS_MAINPLL);
  105. /* Put all plls VCO registers back to reset value. */
  106. writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE &
  107. ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK,
  108. &clock_manager_base->main_pll.vco);
  109. writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE &
  110. ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK,
  111. &clock_manager_base->per_pll.vco);
  112. writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE &
  113. ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK,
  114. &clock_manager_base->sdr_pll.vco);
  115. /*
  116. * The clocks to the flash devices and the L4_MAIN clocks can
  117. * glitch when coming out of safe mode if their source values
  118. * are different from their reset value. So the trick it to
  119. * put them back to their reset state, and change input
  120. * after exiting safe mode but before ungating the clocks.
  121. */
  122. writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE,
  123. &clock_manager_base->per_pll.src);
  124. writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE,
  125. &clock_manager_base->main_pll.l4src);
  126. /* read back for the required 5 us delay. */
  127. readl(&clock_manager_base->main_pll.vco);
  128. readl(&clock_manager_base->per_pll.vco);
  129. readl(&clock_manager_base->sdr_pll.vco);
  130. /*
  131. * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN
  132. * with numerator and denominator.
  133. */
  134. writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco);
  135. writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco);
  136. writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco);
  137. /*
  138. * Time starts here
  139. * must wait 7 us from BGPWRDN_SET(0) to VCO_ENABLE_SET(1)
  140. */
  141. start = get_timer(0);
  142. /* timeout in unit of us as CONFIG_SYS_HZ = 1000*1000 */
  143. timeout = 7;
  144. /* main mpu */
  145. writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk);
  146. /* main main clock */
  147. writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk);
  148. /* main for dbg */
  149. writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk);
  150. /* main for cfgs2fuser0clk */
  151. writel(cfg->cfg2fuser0clk,
  152. &clock_manager_base->main_pll.cfgs2fuser0clk);
  153. /* Peri emac0 50 MHz default to RMII */
  154. writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk);
  155. /* Peri emac1 50 MHz default to RMII */
  156. writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk);
  157. /* Peri QSPI */
  158. writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk);
  159. writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk);
  160. /* Peri pernandsdmmcclk */
  161. writel(cfg->mainnandsdmmcclk,
  162. &clock_manager_base->main_pll.mainnandsdmmcclk);
  163. writel(cfg->pernandsdmmcclk,
  164. &clock_manager_base->per_pll.pernandsdmmcclk);
  165. /* Peri perbaseclk */
  166. writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk);
  167. /* Peri s2fuser1clk */
  168. writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk);
  169. /* 7 us must have elapsed before we can enable the VCO */
  170. while (get_timer(start) < timeout)
  171. ;
  172. /* Enable vco */
  173. /* main pll vco */
  174. writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  175. &clock_manager_base->main_pll.vco);
  176. /* periferal pll */
  177. writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  178. &clock_manager_base->per_pll.vco);
  179. /* sdram pll vco */
  180. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  181. &clock_manager_base->sdr_pll.vco);
  182. /* L3 MP and L3 SP */
  183. writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv);
  184. writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv);
  185. writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv);
  186. /* L4 MP, L4 SP, can0, and can1 */
  187. writel(cfg->perdiv, &clock_manager_base->per_pll.div);
  188. writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv);
  189. #define LOCKED_MASK \
  190. (CLKMGR_INTER_SDRPLLLOCKED_MASK | \
  191. CLKMGR_INTER_PERPLLLOCKED_MASK | \
  192. CLKMGR_INTER_MAINPLLLOCKED_MASK)
  193. cm_wait_for_lock(LOCKED_MASK);
  194. /* write the sdram clock counters before toggling outreset all */
  195. writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK,
  196. &clock_manager_base->sdr_pll.ddrdqsclk);
  197. writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK,
  198. &clock_manager_base->sdr_pll.ddr2xdqsclk);
  199. writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK,
  200. &clock_manager_base->sdr_pll.ddrdqclk);
  201. writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK,
  202. &clock_manager_base->sdr_pll.s2fuser2clk);
  203. /*
  204. * after locking, but before taking out of bypass
  205. * assert/deassert outresetall
  206. */
  207. uint32_t mainvco = readl(&clock_manager_base->main_pll.vco);
  208. /* assert main outresetall */
  209. writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
  210. &clock_manager_base->main_pll.vco);
  211. uint32_t periphvco = readl(&clock_manager_base->per_pll.vco);
  212. /* assert pheriph outresetall */
  213. writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
  214. &clock_manager_base->per_pll.vco);
  215. /* assert sdram outresetall */
  216. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN|
  217. CLKMGR_SDRPLLGRP_VCO_OUTRESETALL,
  218. &clock_manager_base->sdr_pll.vco);
  219. /* deassert main outresetall */
  220. writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
  221. &clock_manager_base->main_pll.vco);
  222. /* deassert pheriph outresetall */
  223. writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
  224. &clock_manager_base->per_pll.vco);
  225. /* deassert sdram outresetall */
  226. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  227. &clock_manager_base->sdr_pll.vco);
  228. /*
  229. * now that we've toggled outreset all, all the clocks
  230. * are aligned nicely; so we can change any phase.
  231. */
  232. cm_write_with_phase(cfg->ddrdqsclk,
  233. (uint32_t)&clock_manager_base->sdr_pll.ddrdqsclk,
  234. CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK);
  235. /* SDRAM DDR2XDQSCLK */
  236. cm_write_with_phase(cfg->ddr2xdqsclk,
  237. (uint32_t)&clock_manager_base->sdr_pll.ddr2xdqsclk,
  238. CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK);
  239. cm_write_with_phase(cfg->ddrdqclk,
  240. (uint32_t)&clock_manager_base->sdr_pll.ddrdqclk,
  241. CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK);
  242. cm_write_with_phase(cfg->s2fuser2clk,
  243. (uint32_t)&clock_manager_base->sdr_pll.s2fuser2clk,
  244. CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK);
  245. /* Take all three PLLs out of bypass when safe mode is cleared. */
  246. cm_write_bypass(0);
  247. /* clear safe mode */
  248. cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE);
  249. /*
  250. * now that safe mode is clear with clocks gated
  251. * it safe to change the source mux for the flashes the the L4_MAIN
  252. */
  253. writel(cfg->persrc, &clock_manager_base->per_pll.src);
  254. writel(cfg->l4src, &clock_manager_base->main_pll.l4src);
  255. /* Now ungate non-hw-managed clocks */
  256. writel(~0, &clock_manager_base->main_pll.en);
  257. writel(~0, &clock_manager_base->per_pll.en);
  258. writel(~0, &clock_manager_base->sdr_pll.en);
  259. /* Clear the loss of lock bits (write 1 to clear) */
  260. writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK |
  261. CLKMGR_INTER_MAINPLLLOST_MASK,
  262. &clock_manager_base->inter);
  263. }
  264. static unsigned int cm_get_main_vco_clk_hz(void)
  265. {
  266. uint32_t reg, clock;
  267. /* get the main VCO clock */
  268. reg = readl(&clock_manager_base->main_pll.vco);
  269. clock = CONFIG_HPS_CLK_OSC1_HZ;
  270. clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >>
  271. CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1;
  272. clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >>
  273. CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1;
  274. return clock;
  275. }
  276. static unsigned int cm_get_per_vco_clk_hz(void)
  277. {
  278. uint32_t reg, clock = 0;
  279. /* identify PER PLL clock source */
  280. reg = readl(&clock_manager_base->per_pll.vco);
  281. reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >>
  282. CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET;
  283. if (reg == CLKMGR_VCO_SSRC_EOSC1)
  284. clock = CONFIG_HPS_CLK_OSC1_HZ;
  285. else if (reg == CLKMGR_VCO_SSRC_EOSC2)
  286. clock = CONFIG_HPS_CLK_OSC2_HZ;
  287. else if (reg == CLKMGR_VCO_SSRC_F2S)
  288. clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ;
  289. /* get the PER VCO clock */
  290. reg = readl(&clock_manager_base->per_pll.vco);
  291. clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >>
  292. CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1;
  293. clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >>
  294. CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1;
  295. return clock;
  296. }
  297. unsigned long cm_get_mpu_clk_hz(void)
  298. {
  299. uint32_t reg, clock;
  300. clock = cm_get_main_vco_clk_hz();
  301. /* get the MPU clock */
  302. reg = readl(&clock_manager_base->altera.mpuclk);
  303. clock /= (reg + 1);
  304. reg = readl(&clock_manager_base->main_pll.mpuclk);
  305. clock /= (reg + 1);
  306. return clock;
  307. }
  308. unsigned long cm_get_sdram_clk_hz(void)
  309. {
  310. uint32_t reg, clock = 0;
  311. /* identify SDRAM PLL clock source */
  312. reg = readl(&clock_manager_base->sdr_pll.vco);
  313. reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >>
  314. CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET;
  315. if (reg == CLKMGR_VCO_SSRC_EOSC1)
  316. clock = CONFIG_HPS_CLK_OSC1_HZ;
  317. else if (reg == CLKMGR_VCO_SSRC_EOSC2)
  318. clock = CONFIG_HPS_CLK_OSC2_HZ;
  319. else if (reg == CLKMGR_VCO_SSRC_F2S)
  320. clock = CONFIG_HPS_CLK_F2S_SDR_REF_HZ;
  321. /* get the SDRAM VCO clock */
  322. reg = readl(&clock_manager_base->sdr_pll.vco);
  323. clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >>
  324. CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1;
  325. clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >>
  326. CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1;
  327. /* get the SDRAM (DDR_DQS) clock */
  328. reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk);
  329. reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >>
  330. CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET;
  331. clock /= (reg + 1);
  332. return clock;
  333. }
  334. unsigned int cm_get_l4_sp_clk_hz(void)
  335. {
  336. uint32_t reg, clock = 0;
  337. /* identify the source of L4 SP clock */
  338. reg = readl(&clock_manager_base->main_pll.l4src);
  339. reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >>
  340. CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET;
  341. if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) {
  342. clock = cm_get_main_vco_clk_hz();
  343. /* get the clock prior L4 SP divider (main clk) */
  344. reg = readl(&clock_manager_base->altera.mainclk);
  345. clock /= (reg + 1);
  346. reg = readl(&clock_manager_base->main_pll.mainclk);
  347. clock /= (reg + 1);
  348. } else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) {
  349. clock = cm_get_per_vco_clk_hz();
  350. /* get the clock prior L4 SP divider (periph_base_clk) */
  351. reg = readl(&clock_manager_base->per_pll.perbaseclk);
  352. clock /= (reg + 1);
  353. }
  354. /* get the L4 SP clock which supplied to UART */
  355. reg = readl(&clock_manager_base->main_pll.maindiv);
  356. reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >>
  357. CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET;
  358. clock = clock / (1 << reg);
  359. return clock;
  360. }
  361. unsigned int cm_get_mmc_controller_clk_hz(void)
  362. {
  363. uint32_t reg, clock = 0;
  364. /* identify the source of MMC clock */
  365. reg = readl(&clock_manager_base->per_pll.src);
  366. reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >>
  367. CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET;
  368. if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) {
  369. clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ;
  370. } else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) {
  371. clock = cm_get_main_vco_clk_hz();
  372. /* get the SDMMC clock */
  373. reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk);
  374. clock /= (reg + 1);
  375. } else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) {
  376. clock = cm_get_per_vco_clk_hz();
  377. /* get the SDMMC clock */
  378. reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk);
  379. clock /= (reg + 1);
  380. }
  381. /* further divide by 4 as we have fixed divider at wrapper */
  382. clock /= 4;
  383. return clock;
  384. }
  385. unsigned int cm_get_qspi_controller_clk_hz(void)
  386. {
  387. uint32_t reg, clock = 0;
  388. /* identify the source of QSPI clock */
  389. reg = readl(&clock_manager_base->per_pll.src);
  390. reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >>
  391. CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET;
  392. if (reg == CLKMGR_QSPI_CLK_SRC_F2S) {
  393. clock = CONFIG_HPS_CLK_F2S_PER_REF_HZ;
  394. } else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) {
  395. clock = cm_get_main_vco_clk_hz();
  396. /* get the qspi clock */
  397. reg = readl(&clock_manager_base->main_pll.mainqspiclk);
  398. clock /= (reg + 1);
  399. } else if (reg == CLKMGR_QSPI_CLK_SRC_PER) {
  400. clock = cm_get_per_vco_clk_hz();
  401. /* get the qspi clock */
  402. reg = readl(&clock_manager_base->per_pll.perqspiclk);
  403. clock /= (reg + 1);
  404. }
  405. return clock;
  406. }
  407. unsigned int cm_get_spi_controller_clk_hz(void)
  408. {
  409. uint32_t reg, clock = 0;
  410. clock = cm_get_per_vco_clk_hz();
  411. /* get the clock prior L4 SP divider (periph_base_clk) */
  412. reg = readl(&clock_manager_base->per_pll.perbaseclk);
  413. clock /= (reg + 1);
  414. return clock;
  415. }
  416. static void cm_print_clock_quick_summary(void)
  417. {
  418. printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
  419. printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000);
  420. printf("EOSC1 %8d kHz\n", CONFIG_HPS_CLK_OSC1_HZ / 1000);
  421. printf("EOSC2 %8d kHz\n", CONFIG_HPS_CLK_OSC2_HZ / 1000);
  422. printf("F2S_SDR_REF %8d kHz\n", CONFIG_HPS_CLK_F2S_SDR_REF_HZ / 1000);
  423. printf("F2S_PER_REF %8d kHz\n", CONFIG_HPS_CLK_F2S_PER_REF_HZ / 1000);
  424. printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
  425. printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
  426. printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
  427. printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
  428. }
  429. int set_cpu_clk_info(void)
  430. {
  431. /* Calculate the clock frequencies required for drivers */
  432. cm_get_l4_sp_clk_hz();
  433. cm_get_mmc_controller_clk_hz();
  434. gd->bd->bi_arm_freq = cm_get_mpu_clk_hz() / 1000000;
  435. gd->bd->bi_dsp_freq = 0;
  436. gd->bd->bi_ddr_freq = cm_get_sdram_clk_hz() / 1000000;
  437. return 0;
  438. }
  439. int do_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  440. {
  441. cm_print_clock_quick_summary();
  442. return 0;
  443. }
  444. U_BOOT_CMD(
  445. clocks, CONFIG_SYS_MAXARGS, 1, do_showclocks,
  446. "display clocks",
  447. ""
  448. );