|
@@ -9,17 +9,24 @@
|
|
#include <asm/io.h>
|
|
#include <asm/io.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/arch/mem.h>
|
|
#include <asm/arch/mem.h>
|
|
-#include <asm/arch/cpu.h>
|
|
|
|
-#include <asm/omap_gpmc.h>
|
|
|
|
|
|
+#include <linux/mtd/omap_gpmc.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/bch.h>
|
|
#include <linux/bch.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/compiler.h>
|
|
#include <nand.h>
|
|
#include <nand.h>
|
|
-#include <asm/omap_elm.h>
|
|
|
|
|
|
+#include <linux/mtd/omap_elm.h>
|
|
|
|
|
|
#define BADBLOCK_MARKER_LENGTH 2
|
|
#define BADBLOCK_MARKER_LENGTH 2
|
|
#define SECTOR_BYTES 512
|
|
#define SECTOR_BYTES 512
|
|
|
|
+#define ECCCLEAR (0x1 << 8)
|
|
|
|
+#define ECCRESULTREG1 (0x1 << 0)
|
|
|
|
+/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
|
|
|
|
+#define BCH4_BIT_PAD 4
|
|
|
|
|
|
|
|
+#ifdef CONFIG_BCH
|
|
|
|
+static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
|
|
|
|
+ 0x97, 0x79, 0xe5, 0x24, 0xb5};
|
|
|
|
+#endif
|
|
static uint8_t cs;
|
|
static uint8_t cs;
|
|
static __maybe_unused struct nand_ecclayout omap_ecclayout;
|
|
static __maybe_unused struct nand_ecclayout omap_ecclayout;
|
|
|
|
|
|
@@ -60,21 +67,6 @@ int omap_spl_dev_ready(struct mtd_info *mtd)
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
|
|
-/*
|
|
|
|
- * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in
|
|
|
|
- * GPMC controller
|
|
|
|
- * @mtd: MTD device structure
|
|
|
|
- *
|
|
|
|
- */
|
|
|
|
-static void __maybe_unused omap_hwecc_init(struct nand_chip *chip)
|
|
|
|
-{
|
|
|
|
- /*
|
|
|
|
- * Init ECC Control Register
|
|
|
|
- * Clear all ECC | Enable Reg1
|
|
|
|
- */
|
|
|
|
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
- writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config);
|
|
|
|
-}
|
|
|
|
|
|
|
|
/*
|
|
/*
|
|
* gen_true_ecc - This function will generate true ECC value, which
|
|
* gen_true_ecc - This function will generate true ECC value, which
|
|
@@ -155,74 +147,6 @@ static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
return 0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
-/*
|
|
|
|
- * omap_calculate_ecc - Generate non-inverted ECC bytes.
|
|
|
|
- *
|
|
|
|
- * Using noninverted ECC can be considered ugly since writing a blank
|
|
|
|
- * page ie. padding will clear the ECC bytes. This is no problem as
|
|
|
|
- * long nobody is trying to write data on the seemingly unused page.
|
|
|
|
- * Reading an erased page will produce an ECC mismatch between
|
|
|
|
- * generated and read ECC bytes that has to be dealt with separately.
|
|
|
|
- * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
|
|
|
|
- * is used, the result of read will be 0x0 while the ECC offsets of the
|
|
|
|
- * spare area will be 0xFF which will result in an ECC mismatch.
|
|
|
|
- * @mtd: MTD structure
|
|
|
|
- * @dat: unused
|
|
|
|
- * @ecc_code: ecc_code buffer
|
|
|
|
- */
|
|
|
|
-static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd,
|
|
|
|
- const uint8_t *dat, uint8_t *ecc_code)
|
|
|
|
-{
|
|
|
|
- u_int32_t val;
|
|
|
|
-
|
|
|
|
- /* Start Reading from HW ECC1_Result = 0x200 */
|
|
|
|
- val = readl(&gpmc_cfg->ecc1_result);
|
|
|
|
-
|
|
|
|
- ecc_code[0] = val & 0xFF;
|
|
|
|
- ecc_code[1] = (val >> 16) & 0xFF;
|
|
|
|
- ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Stop reading anymore ECC vals and clear old results
|
|
|
|
- * enable will be called if more reads are required
|
|
|
|
- */
|
|
|
|
- writel(0x000, &gpmc_cfg->ecc_config);
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * omap_enable_ecc - This function enables the hardware ecc functionality
|
|
|
|
- * @mtd: MTD device structure
|
|
|
|
- * @mode: Read/Write mode
|
|
|
|
- */
|
|
|
|
-static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
|
|
|
|
-{
|
|
|
|
- struct nand_chip *chip = mtd->priv;
|
|
|
|
- uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
|
|
|
|
-
|
|
|
|
- switch (mode) {
|
|
|
|
- case NAND_ECC_READ:
|
|
|
|
- case NAND_ECC_WRITE:
|
|
|
|
- /* Clear the ecc result registers, select ecc reg as 1 */
|
|
|
|
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes
|
|
|
|
- * tell all regs to generate size0 sized regs
|
|
|
|
- * we just have a single ECC engine for all CS
|
|
|
|
- */
|
|
|
|
- writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL,
|
|
|
|
- &gpmc_cfg->ecc_size_config);
|
|
|
|
- val = (dev_width << 7) | (cs << 1) | (0x1);
|
|
|
|
- writel(val, &gpmc_cfg->ecc_config);
|
|
|
|
- break;
|
|
|
|
- default:
|
|
|
|
- printf("Error: Unrecognized Mode[%d]!\n", mode);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
/*
|
|
/*
|
|
* Generic BCH interface
|
|
* Generic BCH interface
|
|
*/
|
|
*/
|
|
@@ -239,12 +163,7 @@ struct nand_bch_priv {
|
|
#define ECC_BCH8 1
|
|
#define ECC_BCH8 1
|
|
#define ECC_BCH16 2
|
|
#define ECC_BCH16 2
|
|
|
|
|
|
-/* GPMC ecc engine settings */
|
|
|
|
-#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
|
|
|
|
-#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
|
|
|
|
-
|
|
|
|
/* BCH nibbles for diff bch levels */
|
|
/* BCH nibbles for diff bch levels */
|
|
-#define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1)
|
|
|
|
#define ECC_BCH4_NIBBLES 13
|
|
#define ECC_BCH4_NIBBLES 13
|
|
#define ECC_BCH8_NIBBLES 26
|
|
#define ECC_BCH8_NIBBLES 26
|
|
#define ECC_BCH16_NIBBLES 52
|
|
#define ECC_BCH16_NIBBLES 52
|
|
@@ -256,266 +175,161 @@ struct nand_bch_priv {
|
|
* When some users with other BCH strength will exists this have to change!
|
|
* When some users with other BCH strength will exists this have to change!
|
|
*/
|
|
*/
|
|
static __maybe_unused struct nand_bch_priv bch_priv = {
|
|
static __maybe_unused struct nand_bch_priv bch_priv = {
|
|
- .mode = NAND_ECC_HW_BCH,
|
|
|
|
.type = ECC_BCH8,
|
|
.type = ECC_BCH8,
|
|
.nibbles = ECC_BCH8_NIBBLES,
|
|
.nibbles = ECC_BCH8_NIBBLES,
|
|
.control = NULL
|
|
.control = NULL
|
|
};
|
|
};
|
|
|
|
|
|
/*
|
|
/*
|
|
- * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in
|
|
|
|
- * GPMC controller
|
|
|
|
- * @mtd: MTD device structure
|
|
|
|
- * @mode: Read/Write mode
|
|
|
|
- */
|
|
|
|
-__maybe_unused
|
|
|
|
-static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode)
|
|
|
|
|
|
+ * omap_reverse_list - re-orders list elements in reverse order [internal]
|
|
|
|
+ * @list: pointer to start of list
|
|
|
|
+ * @length: length of list
|
|
|
|
+*/
|
|
|
|
+void omap_reverse_list(u8 *list, unsigned int length)
|
|
{
|
|
{
|
|
- uint32_t val;
|
|
|
|
- uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1;
|
|
|
|
- uint32_t unused_length = 0;
|
|
|
|
- uint32_t wr_mode = BCH_WRAPMODE_6;
|
|
|
|
- struct nand_bch_priv *bch = chip->priv;
|
|
|
|
-
|
|
|
|
- /* Clear the ecc result registers, select ecc reg as 1 */
|
|
|
|
- writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
-
|
|
|
|
- if (bch->ecc_scheme == OMAP_ECC_BCH8_CODE_HW) {
|
|
|
|
- wr_mode = BCH_WRAPMODE_1;
|
|
|
|
-
|
|
|
|
- switch (bch->nibbles) {
|
|
|
|
- case ECC_BCH4_NIBBLES:
|
|
|
|
- unused_length = 3;
|
|
|
|
- break;
|
|
|
|
- case ECC_BCH8_NIBBLES:
|
|
|
|
- unused_length = 2;
|
|
|
|
- break;
|
|
|
|
- case ECC_BCH16_NIBBLES:
|
|
|
|
- unused_length = 0;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * This is ecc_size_config for ELM mode. Here we are using
|
|
|
|
- * different settings for read and write access and also
|
|
|
|
- * depending on BCH strength.
|
|
|
|
- */
|
|
|
|
- switch (mode) {
|
|
|
|
- case NAND_ECC_WRITE:
|
|
|
|
- /* write access only setup eccsize1 config */
|
|
|
|
- val = ((unused_length + bch->nibbles) << 22);
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case NAND_ECC_READ:
|
|
|
|
- default:
|
|
|
|
- /*
|
|
|
|
- * by default eccsize0 selected for ecc1resultsize
|
|
|
|
- * eccsize0 config.
|
|
|
|
- */
|
|
|
|
- val = (bch->nibbles << 12);
|
|
|
|
- /* eccsize1 config */
|
|
|
|
- val |= (unused_length << 22);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- } else {
|
|
|
|
- /*
|
|
|
|
- * This ecc_size_config setting is for BCH sw library.
|
|
|
|
- *
|
|
|
|
- * Note: we only support BCH8 currently with BCH sw library!
|
|
|
|
- * Should be really easy to adobt to BCH4, however some omap3
|
|
|
|
- * have flaws with BCH4.
|
|
|
|
- *
|
|
|
|
- * Here we are using wrapping mode 6 both for reading and
|
|
|
|
- * writing, with:
|
|
|
|
- * size0 = 0 (no additional protected byte in spare area)
|
|
|
|
- * size1 = 32 (skip 32 nibbles = 16 bytes per sector in
|
|
|
|
- * spare area)
|
|
|
|
- */
|
|
|
|
- val = (32 << 22) | (0 << 12);
|
|
|
|
|
|
+ unsigned int i, j;
|
|
|
|
+ unsigned int half_length = length / 2;
|
|
|
|
+ u8 tmp;
|
|
|
|
+ for (i = 0, j = length - 1; i < half_length; i++, j--) {
|
|
|
|
+ tmp = list[i];
|
|
|
|
+ list[i] = list[j];
|
|
|
|
+ list[j] = tmp;
|
|
}
|
|
}
|
|
- /* ecc size configuration */
|
|
|
|
- writel(val, &gpmc_cfg->ecc_size_config);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Configure the ecc engine in gpmc
|
|
|
|
- * We assume 512 Byte sector pages for access to NAND.
|
|
|
|
- */
|
|
|
|
- val = (1 << 16); /* enable BCH mode */
|
|
|
|
- val |= (bch->type << 12); /* setup BCH type */
|
|
|
|
- val |= (wr_mode << 8); /* setup wrapping mode */
|
|
|
|
- val |= (dev_width << 7); /* setup device width (16 or 8 bit) */
|
|
|
|
- val |= (cs << 1); /* setup chip select to work on */
|
|
|
|
- debug("set ECC_CONFIG=0x%08x\n", val);
|
|
|
|
- writel(val, &gpmc_cfg->ecc_config);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
/*
|
|
- * omap_enable_ecc_bch - This function enables the bch h/w ecc functionality
|
|
|
|
|
|
+ * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
|
|
* @mtd: MTD device structure
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
* @mode: Read/Write mode
|
|
*/
|
|
*/
|
|
__maybe_unused
|
|
__maybe_unused
|
|
-static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode)
|
|
|
|
-{
|
|
|
|
- struct nand_chip *chip = mtd->priv;
|
|
|
|
-
|
|
|
|
- omap_hwecc_init_bch(chip, mode);
|
|
|
|
- /* enable ecc */
|
|
|
|
- writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * omap_ecc_disable - Disable H/W ECC calculation
|
|
|
|
- *
|
|
|
|
- * @mtd: MTD device structure
|
|
|
|
- */
|
|
|
|
-static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd)
|
|
|
|
|
|
+static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
|
|
{
|
|
{
|
|
- writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config);
|
|
|
|
|
|
+ struct nand_chip *nand = mtd->priv;
|
|
|
|
+ struct nand_bch_priv *bch = nand->priv;
|
|
|
|
+ unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
|
|
+ unsigned int ecc_algo = 0;
|
|
|
|
+ unsigned int bch_type = 0;
|
|
|
|
+ unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
|
|
|
|
+ u32 ecc_size_config_val = 0;
|
|
|
|
+ u32 ecc_config_val = 0;
|
|
|
|
+
|
|
|
|
+ /* configure GPMC for specific ecc-scheme */
|
|
|
|
+ switch (bch->ecc_scheme) {
|
|
|
|
+ case OMAP_ECC_HAM1_CODE_SW:
|
|
|
|
+ return;
|
|
|
|
+ case OMAP_ECC_HAM1_CODE_HW:
|
|
|
|
+ ecc_algo = 0x0;
|
|
|
|
+ bch_type = 0x0;
|
|
|
|
+ bch_wrapmode = 0x00;
|
|
|
|
+ eccsize0 = 0xFF;
|
|
|
|
+ eccsize1 = 0xFF;
|
|
|
|
+ break;
|
|
|
|
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
|
|
+ case OMAP_ECC_BCH8_CODE_HW:
|
|
|
|
+ ecc_algo = 0x1;
|
|
|
|
+ bch_type = 0x1;
|
|
|
|
+ if (mode == NAND_ECC_WRITE) {
|
|
|
|
+ bch_wrapmode = 0x01;
|
|
|
|
+ eccsize0 = 0; /* extra bits in nibbles per sector */
|
|
|
|
+ eccsize1 = 28; /* OOB bits in nibbles per sector */
|
|
|
|
+ } else {
|
|
|
|
+ bch_wrapmode = 0x01;
|
|
|
|
+ eccsize0 = 26; /* ECC bits in nibbles per sector */
|
|
|
|
+ eccsize1 = 2; /* non-ECC bits in nibbles per sector */
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ default:
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ /* Clear ecc and enable bits */
|
|
|
|
+ writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
|
|
|
|
+ /* Configure ecc size for BCH */
|
|
|
|
+ ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
|
|
|
|
+ writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
|
|
|
|
+
|
|
|
|
+ /* Configure device details for BCH engine */
|
|
|
|
+ ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */
|
|
|
|
+ (bch_type << 12) | /* BCH4/BCH8/BCH16 */
|
|
|
|
+ (bch_wrapmode << 8) | /* wrap mode */
|
|
|
|
+ (dev_width << 7) | /* bus width */
|
|
|
|
+ (0x0 << 4) | /* number of sectors */
|
|
|
|
+ (cs << 1) | /* ECC CS */
|
|
|
|
+ (0x1)); /* enable ECC */
|
|
|
|
+ writel(ecc_config_val, &gpmc_cfg->ecc_config);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
/*
|
|
- * BCH support using ELM module
|
|
|
|
- */
|
|
|
|
-#ifdef CONFIG_NAND_OMAP_ELM
|
|
|
|
-/*
|
|
|
|
- * omap_read_bch8_result - Read BCH result for BCH8 level
|
|
|
|
- *
|
|
|
|
- * @mtd: MTD device structure
|
|
|
|
- * @big_endian: When set read register 3 first
|
|
|
|
- * @ecc_code: Read syndrome from BCH result registers
|
|
|
|
|
|
+ * omap_calculate_ecc - Read ECC result
|
|
|
|
+ * @mtd: MTD structure
|
|
|
|
+ * @dat: unused
|
|
|
|
+ * @ecc_code: ecc_code buffer
|
|
|
|
+ * Using noninverted ECC can be considered ugly since writing a blank
|
|
|
|
+ * page ie. padding will clear the ECC bytes. This is no problem as
|
|
|
|
+ * long nobody is trying to write data on the seemingly unused page.
|
|
|
|
+ * Reading an erased page will produce an ECC mismatch between
|
|
|
|
+ * generated and read ECC bytes that has to be dealt with separately.
|
|
|
|
+ * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
|
|
|
|
+ * is used, the result of read will be 0x0 while the ECC offsets of the
|
|
|
|
+ * spare area will be 0xFF which will result in an ECC mismatch.
|
|
*/
|
|
*/
|
|
-static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian,
|
|
|
|
|
|
+static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
|
|
uint8_t *ecc_code)
|
|
uint8_t *ecc_code)
|
|
{
|
|
{
|
|
- uint32_t *ptr;
|
|
|
|
|
|
+ struct nand_chip *chip = mtd->priv;
|
|
|
|
+ struct nand_bch_priv *bch = chip->priv;
|
|
|
|
+ uint32_t *ptr, val = 0;
|
|
int8_t i = 0, j;
|
|
int8_t i = 0, j;
|
|
|
|
|
|
- if (big_endian) {
|
|
|
|
|
|
+ switch (bch->ecc_scheme) {
|
|
|
|
+ case OMAP_ECC_HAM1_CODE_HW:
|
|
|
|
+ val = readl(&gpmc_cfg->ecc1_result);
|
|
|
|
+ ecc_code[0] = val & 0xFF;
|
|
|
|
+ ecc_code[1] = (val >> 16) & 0xFF;
|
|
|
|
+ ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
|
|
|
|
+ break;
|
|
|
|
+#ifdef CONFIG_BCH
|
|
|
|
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
|
|
+#endif
|
|
|
|
+ case OMAP_ECC_BCH8_CODE_HW:
|
|
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
|
|
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
|
|
- ecc_code[i++] = readl(ptr) & 0xFF;
|
|
|
|
|
|
+ val = readl(ptr);
|
|
|
|
+ ecc_code[i++] = (val >> 0) & 0xFF;
|
|
ptr--;
|
|
ptr--;
|
|
for (j = 0; j < 3; j++) {
|
|
for (j = 0; j < 3; j++) {
|
|
- ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
|
|
|
|
- ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
|
|
|
|
- ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
|
|
|
|
- ecc_code[i++] = readl(ptr) & 0xFF;
|
|
|
|
|
|
+ val = readl(ptr);
|
|
|
|
+ ecc_code[i++] = (val >> 24) & 0xFF;
|
|
|
|
+ ecc_code[i++] = (val >> 16) & 0xFF;
|
|
|
|
+ ecc_code[i++] = (val >> 8) & 0xFF;
|
|
|
|
+ ecc_code[i++] = (val >> 0) & 0xFF;
|
|
ptr--;
|
|
ptr--;
|
|
}
|
|
}
|
|
- } else {
|
|
|
|
- ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0];
|
|
|
|
- for (j = 0; j < 3; j++) {
|
|
|
|
- ecc_code[i++] = readl(ptr) & 0xFF;
|
|
|
|
- ecc_code[i++] = (readl(ptr) >> 8) & 0xFF;
|
|
|
|
- ecc_code[i++] = (readl(ptr) >> 16) & 0xFF;
|
|
|
|
- ecc_code[i++] = (readl(ptr) >> 24) & 0xFF;
|
|
|
|
- ptr++;
|
|
|
|
- }
|
|
|
|
- ecc_code[i++] = readl(ptr) & 0xFF;
|
|
|
|
- ecc_code[i++] = 0; /* 14th byte is always zero */
|
|
|
|
|
|
+ break;
|
|
|
|
+ default:
|
|
|
|
+ return -EINVAL;
|
|
}
|
|
}
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * omap_rotate_ecc_bch - Rotate the syndrome bytes
|
|
|
|
- *
|
|
|
|
- * @mtd: MTD device structure
|
|
|
|
- * @calc_ecc: ECC read from ECC registers
|
|
|
|
- * @syndrome: Rotated syndrome will be retuned in this array
|
|
|
|
- *
|
|
|
|
- */
|
|
|
|
-static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc,
|
|
|
|
- uint8_t *syndrome)
|
|
|
|
-{
|
|
|
|
- struct nand_chip *chip = mtd->priv;
|
|
|
|
- struct nand_bch_priv *bch = chip->priv;
|
|
|
|
- uint8_t n_bytes = 0;
|
|
|
|
- int8_t i, j;
|
|
|
|
-
|
|
|
|
- switch (bch->type) {
|
|
|
|
- case ECC_BCH4:
|
|
|
|
- n_bytes = 8;
|
|
|
|
|
|
+ /* ECC scheme specific syndrome customizations */
|
|
|
|
+ switch (bch->ecc_scheme) {
|
|
|
|
+ case OMAP_ECC_HAM1_CODE_HW:
|
|
break;
|
|
break;
|
|
|
|
+#ifdef CONFIG_BCH
|
|
|
|
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
|
|
|
|
- case ECC_BCH16:
|
|
|
|
- n_bytes = 28;
|
|
|
|
|
|
+ for (i = 0; i < chip->ecc.bytes; i++)
|
|
|
|
+ *(ecc_code + i) = *(ecc_code + i) ^
|
|
|
|
+ bch8_polynomial[i];
|
|
break;
|
|
break;
|
|
-
|
|
|
|
- case ECC_BCH8:
|
|
|
|
- default:
|
|
|
|
- n_bytes = 13;
|
|
|
|
|
|
+#endif
|
|
|
|
+ case OMAP_ECC_BCH8_CODE_HW:
|
|
|
|
+ ecc_code[chip->ecc.bytes - 1] = 0x00;
|
|
break;
|
|
break;
|
|
|
|
+ default:
|
|
|
|
+ return -EINVAL;
|
|
}
|
|
}
|
|
-
|
|
|
|
- for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--)
|
|
|
|
- syndrome[i] = calc_ecc[j];
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * omap_calculate_ecc_bch - Read BCH ECC result
|
|
|
|
- *
|
|
|
|
- * @mtd: MTD structure
|
|
|
|
- * @dat: unused
|
|
|
|
- * @ecc_code: ecc_code buffer
|
|
|
|
- */
|
|
|
|
-static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat,
|
|
|
|
- uint8_t *ecc_code)
|
|
|
|
-{
|
|
|
|
- struct nand_chip *chip = mtd->priv;
|
|
|
|
- struct nand_bch_priv *bch = chip->priv;
|
|
|
|
- uint8_t big_endian = 1;
|
|
|
|
- int8_t ret = 0;
|
|
|
|
-
|
|
|
|
- if (bch->type == ECC_BCH8)
|
|
|
|
- omap_read_bch8_result(mtd, big_endian, ecc_code);
|
|
|
|
- else /* BCH4 and BCH16 currently not supported */
|
|
|
|
- ret = -1;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Stop reading anymore ECC vals and clear old results
|
|
|
|
- * enable will be called if more reads are required
|
|
|
|
- */
|
|
|
|
- omap_ecc_disable(mtd);
|
|
|
|
-
|
|
|
|
- return ret;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * omap_fix_errors_bch - Correct bch error in the data
|
|
|
|
- *
|
|
|
|
- * @mtd: MTD device structure
|
|
|
|
- * @data: Data read from flash
|
|
|
|
- * @error_count:Number of errors in data
|
|
|
|
- * @error_loc: Locations of errors in the data
|
|
|
|
- *
|
|
|
|
- */
|
|
|
|
-static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data,
|
|
|
|
- uint32_t error_count, uint32_t *error_loc)
|
|
|
|
-{
|
|
|
|
- struct nand_chip *chip = mtd->priv;
|
|
|
|
- struct nand_bch_priv *bch = chip->priv;
|
|
|
|
- uint8_t count = 0;
|
|
|
|
- uint32_t error_byte_pos;
|
|
|
|
- uint32_t error_bit_mask;
|
|
|
|
- uint32_t last_bit = (bch->nibbles * 4) - 1;
|
|
|
|
-
|
|
|
|
- /* Flip all bits as specified by the error location array. */
|
|
|
|
- /* FOR( each found error location flip the bit ) */
|
|
|
|
- for (count = 0; count < error_count; count++) {
|
|
|
|
- if (error_loc[count] > last_bit) {
|
|
|
|
- /* Remove the ECC spare bits from correction. */
|
|
|
|
- error_loc[count] -= (last_bit + 1);
|
|
|
|
- /* Offset bit in data region */
|
|
|
|
- error_byte_pos = ((512 * 8) -
|
|
|
|
- (error_loc[count]) - 1) / 8;
|
|
|
|
- /* Error Bit mask */
|
|
|
|
- error_bit_mask = 0x1 << (error_loc[count] % 8);
|
|
|
|
- /* Toggle the error bit to make the correction. */
|
|
|
|
- data[error_byte_pos] ^= error_bit_mask;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
|
|
+ return 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+#ifdef CONFIG_NAND_OMAP_ELM
|
|
/*
|
|
/*
|
|
* omap_correct_data_bch - Compares the ecc read from nand spare area
|
|
* omap_correct_data_bch - Compares the ecc read from nand spare area
|
|
* with ECC registers values and corrects one bit error if it has occured
|
|
* with ECC registers values and corrects one bit error if it has occured
|
|
@@ -532,40 +346,72 @@ static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
|
|
{
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
struct nand_bch_priv *bch = chip->priv;
|
|
- uint8_t syndrome[28];
|
|
|
|
- uint32_t error_count = 0;
|
|
|
|
|
|
+ uint32_t eccbytes = chip->ecc.bytes;
|
|
|
|
+ uint32_t error_count = 0, error_max;
|
|
uint32_t error_loc[8];
|
|
uint32_t error_loc[8];
|
|
- uint32_t i, ecc_flag;
|
|
|
|
|
|
+ uint32_t i, ecc_flag = 0;
|
|
|
|
+ uint8_t count, err = 0;
|
|
|
|
+ uint32_t byte_pos, bit_pos;
|
|
|
|
+
|
|
|
|
+ /* check calculated ecc */
|
|
|
|
+ for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
|
|
|
|
+ if (calc_ecc[i] != 0x00)
|
|
|
|
+ ecc_flag = 1;
|
|
|
|
+ }
|
|
|
|
+ if (!ecc_flag)
|
|
|
|
+ return 0;
|
|
|
|
|
|
|
|
+ /* check for whether its a erased-page */
|
|
ecc_flag = 0;
|
|
ecc_flag = 0;
|
|
- for (i = 0; i < chip->ecc.bytes; i++)
|
|
|
|
|
|
+ for (i = 0; i < chip->ecc.bytes && !ecc_flag; i++) {
|
|
if (read_ecc[i] != 0xff)
|
|
if (read_ecc[i] != 0xff)
|
|
ecc_flag = 1;
|
|
ecc_flag = 1;
|
|
-
|
|
|
|
|
|
+ }
|
|
if (!ecc_flag)
|
|
if (!ecc_flag)
|
|
return 0;
|
|
return 0;
|
|
|
|
|
|
- elm_reset();
|
|
|
|
- elm_config((enum bch_level)(bch->type));
|
|
|
|
-
|
|
|
|
/*
|
|
/*
|
|
* while reading ECC result we read it in big endian.
|
|
* while reading ECC result we read it in big endian.
|
|
* Hence while loading to ELM we have rotate to get the right endian.
|
|
* Hence while loading to ELM we have rotate to get the right endian.
|
|
*/
|
|
*/
|
|
- omap_rotate_ecc_bch(mtd, calc_ecc, syndrome);
|
|
|
|
-
|
|
|
|
|
|
+ switch (bch->ecc_scheme) {
|
|
|
|
+ case OMAP_ECC_BCH8_CODE_HW:
|
|
|
|
+ omap_reverse_list(calc_ecc, eccbytes - 1);
|
|
|
|
+ break;
|
|
|
|
+ default:
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
/* use elm module to check for errors */
|
|
/* use elm module to check for errors */
|
|
- if (elm_check_error(syndrome, bch->nibbles, &error_count,
|
|
|
|
- error_loc) != 0) {
|
|
|
|
- printf("ECC: uncorrectable.\n");
|
|
|
|
- return -1;
|
|
|
|
|
|
+ elm_config((enum bch_level)(bch->type));
|
|
|
|
+ if (elm_check_error(calc_ecc, bch->nibbles, &error_count, error_loc)) {
|
|
|
|
+ printf("nand: error: uncorrectable ECC errors\n");
|
|
|
|
+ return -EINVAL;
|
|
}
|
|
}
|
|
-
|
|
|
|
/* correct bch error */
|
|
/* correct bch error */
|
|
- if (error_count > 0)
|
|
|
|
- omap_fix_errors_bch(mtd, dat, error_count, error_loc);
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
|
|
+ for (count = 0; count < error_count; count++) {
|
|
|
|
+ switch (bch->type) {
|
|
|
|
+ case ECC_BCH8:
|
|
|
|
+ /* 14th byte in ECC is reserved to match ROM layout */
|
|
|
|
+ error_max = SECTOR_BYTES + (eccbytes - 1);
|
|
|
|
+ break;
|
|
|
|
+ default:
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ byte_pos = error_max - (error_loc[count] / 8) - 1;
|
|
|
|
+ bit_pos = error_loc[count] % 8;
|
|
|
|
+ if (byte_pos < SECTOR_BYTES) {
|
|
|
|
+ dat[byte_pos] ^= 1 << bit_pos;
|
|
|
|
+ printf("nand: bit-flip corrected @data=%d\n", byte_pos);
|
|
|
|
+ } else if (byte_pos < error_max) {
|
|
|
|
+ read_ecc[byte_pos - SECTOR_BYTES] = 1 << bit_pos;
|
|
|
|
+ printf("nand: bit-flip corrected @oob=%d\n", byte_pos -
|
|
|
|
+ SECTOR_BYTES);
|
|
|
|
+ } else {
|
|
|
|
+ err = -EBADMSG;
|
|
|
|
+ printf("nand: error: invalid bit-flip location\n");
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return (err) ? err : error_count;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
/**
|
|
@@ -636,57 +482,6 @@ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
|
* OMAP3 BCH8 support (with BCH library)
|
|
* OMAP3 BCH8 support (with BCH library)
|
|
*/
|
|
*/
|
|
#ifdef CONFIG_BCH
|
|
#ifdef CONFIG_BCH
|
|
-/*
|
|
|
|
- * omap_calculate_ecc_bch_sw - Read BCH ECC result
|
|
|
|
- *
|
|
|
|
- * @mtd: MTD device structure
|
|
|
|
- * @dat: The pointer to data on which ecc is computed (unused here)
|
|
|
|
- * @ecc: The ECC output buffer
|
|
|
|
- */
|
|
|
|
-static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, const uint8_t *dat,
|
|
|
|
- uint8_t *ecc)
|
|
|
|
-{
|
|
|
|
- int ret = 0;
|
|
|
|
- size_t i;
|
|
|
|
- unsigned long nsectors, val1, val2, val3, val4;
|
|
|
|
-
|
|
|
|
- nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
|
|
|
|
-
|
|
|
|
- for (i = 0; i < nsectors; i++) {
|
|
|
|
- /* Read hw-computed remainder */
|
|
|
|
- val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]);
|
|
|
|
- val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]);
|
|
|
|
- val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]);
|
|
|
|
- val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Add constant polynomial to remainder, in order to get an ecc
|
|
|
|
- * sequence of 0xFFs for a buffer filled with 0xFFs.
|
|
|
|
- */
|
|
|
|
- *ecc++ = 0xef ^ (val4 & 0xFF);
|
|
|
|
- *ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
|
|
|
|
- *ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
|
|
|
|
- *ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
|
|
|
|
- *ecc++ = 0xed ^ (val3 & 0xFF);
|
|
|
|
- *ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
|
|
|
|
- *ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
|
|
|
|
- *ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
|
|
|
|
- *ecc++ = 0x97 ^ (val2 & 0xFF);
|
|
|
|
- *ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
|
|
|
|
- *ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
|
|
|
|
- *ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
|
|
|
|
- *ecc++ = 0xb5 ^ (val1 & 0xFF);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Stop reading anymore ECC vals and clear old results
|
|
|
|
- * enable will be called if more reads are required
|
|
|
|
- */
|
|
|
|
- omap_ecc_disable(mtd);
|
|
|
|
-
|
|
|
|
- return ret;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
/**
|
|
/**
|
|
* omap_correct_data_bch_sw - Decode received data and correct errors
|
|
* omap_correct_data_bch_sw - Decode received data and correct errors
|
|
* @mtd: MTD device structure
|
|
* @mtd: MTD device structure
|
|
@@ -835,9 +630,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 13;
|
|
nand->ecc.bytes = 13;
|
|
- nand->ecc.hwctl = omap_enable_ecc_bch;
|
|
|
|
|
|
+ nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data_bch_sw;
|
|
nand->ecc.correct = omap_correct_data_bch_sw;
|
|
- nand->ecc.calculate = omap_calculate_ecc_bch_sw;
|
|
|
|
|
|
+ nand->ecc.calculate = omap_calculate_ecc;
|
|
/* define ecc-layout */
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
|
|
@@ -852,7 +647,6 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
|
|
BADBLOCK_MARKER_LENGTH;
|
|
BADBLOCK_MARKER_LENGTH;
|
|
- omap_hwecc_init_bch(nand, NAND_ECC_READ);
|
|
|
|
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
|
|
bch->ecc_scheme = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
|
|
break;
|
|
break;
|
|
#else
|
|
#else
|
|
@@ -878,9 +672,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.strength = 8;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.size = SECTOR_BYTES;
|
|
nand->ecc.bytes = 14;
|
|
nand->ecc.bytes = 14;
|
|
- nand->ecc.hwctl = omap_enable_ecc_bch;
|
|
|
|
|
|
+ nand->ecc.hwctl = omap_enable_hwecc;
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
nand->ecc.correct = omap_correct_data_bch;
|
|
- nand->ecc.calculate = omap_calculate_ecc_bch;
|
|
|
|
|
|
+ nand->ecc.calculate = omap_calculate_ecc;
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
nand->ecc.read_page = omap_read_page_bch;
|
|
/* define ecc-layout */
|
|
/* define ecc-layout */
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|
|
ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
|