|
@@ -0,0 +1,298 @@
|
|
|
+.. SPDX-License-Identifier: GPL-2.0+
|
|
|
+.. Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
|
|
|
+
|
|
|
+Maix Bit
|
|
|
+========
|
|
|
+
|
|
|
+Several of the Sipeed Maix series of boards cotain the Kendryte K210 processor,
|
|
|
+a 64-bit RISC-V CPU. This processor contains several peripherals to accelerate
|
|
|
+neural network processing and other "ai" tasks. This includes a "KPU" neural
|
|
|
+network processor, an audio processor supporting beamforming reception, and a
|
|
|
+digital video port supporting capture and output at VGA resolution. Other
|
|
|
+peripherals include 8M of SRAM (accessible with and without caching); remappable
|
|
|
+pins, including 40 GPIOs; AES, FFT, and SHA256 accelerators; a DMA controller;
|
|
|
+and I2C, I2S, and SPI controllers. Maix peripherals vary, but include spi flash;
|
|
|
+on-board usb-serial bridges; ports for cameras, displays, and sd cards; and
|
|
|
+ESP32 chips. Currently, only the Sipeed Maix Bit V2.0 (bitm) is supported, but
|
|
|
+the boards are fairly similar.
|
|
|
+
|
|
|
+Documentation for Maix boards is available from
|
|
|
+`Sipeed's website <http://dl.sipeed.com/MAIX/HDK/>`_.
|
|
|
+Documentation for the Kendryte K210 is available from
|
|
|
+`Kendryte's website <https://kendryte.com/downloads/>`_. However, hardware
|
|
|
+details are rather lacking, so most technical reference has been taken from the
|
|
|
+`standalone sdk <https://github.com/kendryte/kendryte-standalone-sdk>`_.
|
|
|
+
|
|
|
+Build and boot steps
|
|
|
+--------------------
|
|
|
+
|
|
|
+To build u-boot, run
|
|
|
+
|
|
|
+.. code-block:: none
|
|
|
+
|
|
|
+ make sipeed_maix_bitm_defconfig
|
|
|
+ make CROSS_COMPILE=<your cross compile prefix>
|
|
|
+
|
|
|
+To flash u-boot to a maix bit, run
|
|
|
+
|
|
|
+.. code-block:: none
|
|
|
+
|
|
|
+ kflash -tp /dev/<your tty here> -B bit_mic u-boot-dtb.bin
|
|
|
+
|
|
|
+Boot output should look like the following:
|
|
|
+
|
|
|
+.. code-block:: none
|
|
|
+
|
|
|
+ U-Boot 2020.04-rc2-00087-g2221cc09c1-dirty (Feb 28 2020 - 13:53:09 -0500)
|
|
|
+
|
|
|
+ DRAM: 8 MiB
|
|
|
+ In: serial@38000000
|
|
|
+ Out: serial@38000000
|
|
|
+ Err: serial@38000000
|
|
|
+ =>
|
|
|
+
|
|
|
+Loading Images
|
|
|
+^^^^^^^^^^^^^^
|
|
|
+
|
|
|
+To load a kernel, transfer it over serial.
|
|
|
+
|
|
|
+.. code-block:: none
|
|
|
+
|
|
|
+ => loady 80000000 1500000
|
|
|
+ ## Switch baudrate to 1500000 bps and press ENTER ...
|
|
|
+
|
|
|
+ *** baud: 1500000
|
|
|
+
|
|
|
+ *** baud: 1500000 ***
|
|
|
+ ## Ready for binary (ymodem) download to 0x80000000 at 1500000 bps...
|
|
|
+ C
|
|
|
+ *** file: loader.bin
|
|
|
+ $ sz -vv loader.bin
|
|
|
+ Sending: loader.bin
|
|
|
+ Bytes Sent:2478208 BPS:72937
|
|
|
+ Sending:
|
|
|
+ Ymodem sectors/kbytes sent: 0/ 0k
|
|
|
+ Transfer complete
|
|
|
+
|
|
|
+ *** exit status: 0 ***
|
|
|
+ ## Total Size = 0x0025d052 = 2478162 Bytes
|
|
|
+ ## Switch baudrate to 115200 bps and press ESC ...
|
|
|
+
|
|
|
+ *** baud: 115200
|
|
|
+
|
|
|
+ *** baud: 115200 ***
|
|
|
+ =>
|
|
|
+
|
|
|
+Running Programs
|
|
|
+^^^^^^^^^^^^^^^^
|
|
|
+
|
|
|
+Binaries
|
|
|
+""""""""
|
|
|
+
|
|
|
+To run a bare binary, use the ``go`` command:
|
|
|
+
|
|
|
+.. code-block:: none
|
|
|
+
|
|
|
+ => loady
|
|
|
+ ## Ready for binary (ymodem) download to 0x80000000 at 115200 bps...
|
|
|
+ C
|
|
|
+ *** file: ./examples/standalone/hello_world.bin
|
|
|
+ $ sz -vv ./examples/standalone/hello_world.bin
|
|
|
+ Sending: hello_world.bin
|
|
|
+ Bytes Sent: 4864 BPS:649
|
|
|
+ Sending:
|
|
|
+ Ymodem sectors/kbytes sent: 0/ 0k
|
|
|
+ Transfer complete
|
|
|
+
|
|
|
+ *** exit status: 0 ***
|
|
|
+ (CAN) packets, 5 retries
|
|
|
+ ## Total Size = 0x000012f8 = 4856 Bytes
|
|
|
+ => go 80000000
|
|
|
+ ## Starting application at 0x80000000 ...
|
|
|
+ Example expects ABI version 9
|
|
|
+ Actual U-Boot ABI version 9
|
|
|
+ Hello World
|
|
|
+ argc = 1
|
|
|
+ argv[0] = "80000000"
|
|
|
+ argv[1] = "<NULL>"
|
|
|
+ Hit any key to exit ...
|
|
|
+
|
|
|
+Legacy Images
|
|
|
+"""""""""""""
|
|
|
+
|
|
|
+To run legacy images, use the ``bootm`` command:
|
|
|
+
|
|
|
+.. code-block:: none
|
|
|
+
|
|
|
+ $ tools/mkimage -A riscv -O u-boot -T standalone -C none -a 80000000 -e 80000000 -d examples/standalone/hello_world.bin hello_world.img
|
|
|
+ Image Name:
|
|
|
+ Created: Thu Mar 5 12:04:10 2020
|
|
|
+ Image Type: RISC-V U-Boot Standalone Program (uncompressed)
|
|
|
+ Data Size: 4856 Bytes = 4.74 KiB = 0.00 MiB
|
|
|
+ Load Address: 80000000
|
|
|
+ Entry Point: 80000000
|
|
|
+
|
|
|
+ $ picocom -b 115200 /dev/ttyUSB0i
|
|
|
+ => loady
|
|
|
+ ## Ready for binary (ymodem) download to 0x80000000 at 115200 bps...
|
|
|
+ C
|
|
|
+ *** file: hello_world.img
|
|
|
+ $ sz -vv hello_world.img
|
|
|
+ Sending: hello_world.img
|
|
|
+ Bytes Sent: 4992 BPS:665
|
|
|
+ Sending:
|
|
|
+ Ymodem sectors/kbytes sent: 0/ 0k
|
|
|
+ Transfer complete
|
|
|
+
|
|
|
+ *** exit status: 0 ***
|
|
|
+ CAN) packets, 3 retries
|
|
|
+ ## Total Size = 0x00001338 = 4920 Bytes
|
|
|
+ => bootm
|
|
|
+ ## Booting kernel from Legacy Image at 80000000 ...
|
|
|
+ Image Name:
|
|
|
+ Image Type: RISC-V U-Boot Standalone Program (uncompressed)
|
|
|
+ Data Size: 4856 Bytes = 4.7 KiB
|
|
|
+ Load Address: 80000000
|
|
|
+ Entry Point: 80000000
|
|
|
+ Verifying Checksum ... OK
|
|
|
+ Loading Standalone Program
|
|
|
+ Example expects ABI version 9
|
|
|
+ Actual U-Boot ABI version 9
|
|
|
+ Hello World
|
|
|
+ argc = 0
|
|
|
+ argv[0] = "<NULL>"
|
|
|
+ Hit any key to exit ...
|
|
|
+
|
|
|
+Over- and Under-clocking
|
|
|
+------------------------
|
|
|
+
|
|
|
+To change the clock speed of the K210, you will need to enable
|
|
|
+``CONFIG_CLK_K210_SET_RATE`` and edit the board's device tree. To do this, add a
|
|
|
+section to ``arch/riscv/arch/riscv/dts/k210-maix-bit.dts`` like the following:
|
|
|
+
|
|
|
+.. code-block:: none
|
|
|
+
|
|
|
+ &sysclk {
|
|
|
+ assigned-clocks = <&sysclk K210_CLK_PLL0>;
|
|
|
+ assigned-clock-rates = <800000000>;
|
|
|
+ };
|
|
|
+
|
|
|
+There are three PLLs on the K210: PLL0 is the parent of most of the components,
|
|
|
+including the CPU and RAM. PLL1 is the parent of the neural network coprocessor.
|
|
|
+PLL2 is the parent of the sound processing devices. Note that child clocks of
|
|
|
+PLL0 and PLL2 run at *half* the speed of the PLLs. For example, if PLL0 is
|
|
|
+running at 800 MHz, then the CPU will run at 400 MHz. This is the example given
|
|
|
+above. The CPU can be overclocked to around 600 MHz, and underclocked to 26 MHz.
|
|
|
+
|
|
|
+It is possible to set PLL2's parent to PLL0. The plls are more accurate when
|
|
|
+converting between similar frequencies. This makes it easier to get an accurate
|
|
|
+frequency for I2S. As an example, consider sampling an I2S device at 44.1 kHz.
|
|
|
+On this device, the I2S serial clock runs at 64 times the sample rate.
|
|
|
+Therefore, we would like to run PLL2 at an even multiple of 2.8224 MHz. If
|
|
|
+PLL2's parent is IN0, we could use a frequency of 390 MHz (the same as the CPU's
|
|
|
+default speed). Dividing by 138 yields a serial clock of about 2.8261 MHz. This
|
|
|
+results in a sample rate of 44.158 kHz---around 50 Hz or .1% too fast. If,
|
|
|
+instead, we set PLL2's parent to PLL1 running at 390 MHz, and request a rate of
|
|
|
+2.8224 * 136 = 383.8464 MHz, the achieved rate is 383.90625 MHz. Dividing by 136
|
|
|
+yields a serial clock of about 2.8228 MHz. This results in a sample rate of
|
|
|
+44.107 kHz---just 7 Hz or .02% too fast. This configuration is shown in the
|
|
|
+following example:
|
|
|
+
|
|
|
+.. code-block:: none
|
|
|
+
|
|
|
+ &sysclk {
|
|
|
+ assigned-clocks = <&sysclk K210_CLK_PLL1>, <&sysclk K210_CLK_PLL2>;
|
|
|
+ assigned-clock-parents = <0>, <&sysclk K210_CLK_PLL1>;
|
|
|
+ assigned-clock-rates = <390000000>, <383846400>;
|
|
|
+ };
|
|
|
+
|
|
|
+There are a couple of quirks to the PLLs. First, there are more frequency ratios
|
|
|
+just above and below 1.0, but there is a small gap around 1.0. To be explicit,
|
|
|
+if the input frequency is 100 MHz, it would be impossible to have an output of
|
|
|
+99 or 101 MHz. In addition, there is a maximum frequency for the internal VCO,
|
|
|
+so higher input/output frequencies will be less accurate than lower ones.
|
|
|
+
|
|
|
+Technical Details
|
|
|
+-----------------
|
|
|
+
|
|
|
+Boot Sequence
|
|
|
+^^^^^^^^^^^^^
|
|
|
+
|
|
|
+1. ``RESET`` pin is deasserted.
|
|
|
+2. Both harts begin executing at ``0x00001000``.
|
|
|
+3. Both harts jump to firmware at ``0x88000000``.
|
|
|
+4. One hart is chosen as a boot hart.
|
|
|
+5. Firmware reads value of pin ``IO_16`` (ISP).
|
|
|
+
|
|
|
+ * If the pin is low, enter ISP mode. This mode allows loading data to ram,
|
|
|
+ writing it to flash, and booting from specific addresses.
|
|
|
+ * If the pin is high, continue boot.
|
|
|
+6. Firmware reads the next stage from flash (SPI3) to address ``0x80000000``.
|
|
|
+
|
|
|
+ * If byte 0 is 1, the next stage is decrypted using the built-in AES
|
|
|
+ accelerator and the one-time programmable, 128-bit AES key.
|
|
|
+ * Bytes 1 to 4 hold the length of the next stage.
|
|
|
+ * The SHA-256 sum of the next stage is automatically calculated, and verified
|
|
|
+ against the 32 bytes following the next stage.
|
|
|
+7. The boot hart sends an IPI to the other hart telling it to jump to the next
|
|
|
+ stage.
|
|
|
+8. The boot hart jumps to ``0x80000000``.
|
|
|
+
|
|
|
+Memory Map
|
|
|
+^^^^^^^^^^
|
|
|
+
|
|
|
+========== ========= ===========
|
|
|
+Address Size Description
|
|
|
+========== ========= ===========
|
|
|
+0x00000000 0x1000 debug
|
|
|
+0x00001000 0x1000 rom
|
|
|
+0x02000000 0xC000 clint
|
|
|
+0x0C000000 0x4000000 plic
|
|
|
+0x38000000 0x1000 uarths
|
|
|
+0x38001000 0x1000 gpiohs
|
|
|
+0x40000000 0x400000 sram0 (non-cached)
|
|
|
+0x40400000 0x200000 sram1 (non-cached)
|
|
|
+0x40600000 0x200000 airam (non-cached)
|
|
|
+0x40800000 0xC00000 kpu
|
|
|
+0x42000000 0x400000 fft
|
|
|
+0x50000000 0x1000 dmac
|
|
|
+0x50200000 0x200000 apb0
|
|
|
+0x50200000 0x80 gpio
|
|
|
+0x50210000 0x100 uart0
|
|
|
+0x50220000 0x100 uart1
|
|
|
+0x50230000 0x100 uart2
|
|
|
+0x50240000 0x100 spi slave
|
|
|
+0x50250000 0x200 i2s0
|
|
|
+0x50250200 0x200 apu
|
|
|
+0x50260000 0x200 i2s1
|
|
|
+0x50270000 0x200 i2s2
|
|
|
+0x50280000 0x100 i2c0
|
|
|
+0x50290000 0x100 i2c1
|
|
|
+0x502A0000 0x100 i2c2
|
|
|
+0x502B0000 0x100 fpioa
|
|
|
+0x502C0000 0x100 sha256
|
|
|
+0x502D0000 0x100 timer0
|
|
|
+0x502E0000 0x100 timer1
|
|
|
+0x502F0000 0x100 timer2
|
|
|
+0x50400000 0x200000 apb1
|
|
|
+0x50400000 0x100 wdt0
|
|
|
+0x50410000 0x100 wdt1
|
|
|
+0x50420000 0x100 otp control
|
|
|
+0x50430000 0x100 dvp
|
|
|
+0x50440000 0x100 sysctl
|
|
|
+0x50450000 0x100 aes
|
|
|
+0x50460000 0x100 rtc
|
|
|
+0x52000000 0x4000000 apb2
|
|
|
+0x52000000 0x100 spi0
|
|
|
+0x53000000 0x100 spi1
|
|
|
+0x54000000 0x200 spi3
|
|
|
+0x80000000 0x400000 sram0 (cached)
|
|
|
+0x80400000 0x200000 sram1 (cached)
|
|
|
+0x80600000 0x200000 airam (cached)
|
|
|
+0x88000000 0x20000 otp
|
|
|
+0x88000000 0xC200 firmware
|
|
|
+0x8801C000 0x1000 riscv priv spec 1.9 config
|
|
|
+0x8801D000 0x2000 flattened device tree (contains only addresses and
|
|
|
+ interrupts)
|
|
|
+0x8801f000 0x1000 credits
|
|
|
+========== ========= ===========
|