|
@@ -22,8 +22,9 @@
|
|
|
/* board will busyloop until this many degrees C below CPU max temperature */
|
|
|
#define TEMPERATURE_HOT_DELTA 5 /* CPU maxT - 5C */
|
|
|
#define FACTOR0 10000000
|
|
|
-#define FACTOR1 15976
|
|
|
-#define FACTOR2 4297157
|
|
|
+#define FACTOR1 15423
|
|
|
+#define FACTOR2 4148468
|
|
|
+#define OFFSET 3580661
|
|
|
#define MEASURE_FREQ 327
|
|
|
#define TEMPERATURE_MIN -40
|
|
|
#define TEMPERATURE_HOT 85
|
|
@@ -54,39 +55,42 @@ static int read_cpu_temperature(struct udevice *dev)
|
|
|
struct thermal_data *priv = dev_get_priv(dev);
|
|
|
u32 fuse = priv->fuse;
|
|
|
int t1, n1;
|
|
|
- u32 c1, c2;
|
|
|
+ u64 c1, c2;
|
|
|
u64 temp64;
|
|
|
|
|
|
/*
|
|
|
* Sensor data layout:
|
|
|
* [31:20] - sensor value @ 25C
|
|
|
* We use universal formula now and only need sensor value @ 25C
|
|
|
- * slope = 0.4297157 - (0.0015976 * 25C fuse)
|
|
|
+ * slope = 0.4445388 - (0.0016549 * 25C fuse)
|
|
|
*/
|
|
|
n1 = fuse >> 20;
|
|
|
t1 = 25; /* t1 always 25C */
|
|
|
|
|
|
/*
|
|
|
* Derived from linear interpolation:
|
|
|
- * slope = 0.4297157 - (0.0015976 * 25C fuse)
|
|
|
+ * slope = 0.4445388 - (0.0016549 * 25C fuse)
|
|
|
* slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0
|
|
|
- * (Nmeas - n1) / (Tmeas - t1) = slope
|
|
|
+ * offset = 3.580661
|
|
|
+ * offset = OFFSET / 1000000
|
|
|
+ * (Nmeas - n1) / (Tmeas - t1 - offset) = slope
|
|
|
* We want to reduce this down to the minimum computation necessary
|
|
|
* for each temperature read. Also, we want Tmeas in millicelsius
|
|
|
* and we don't want to lose precision from integer division. So...
|
|
|
- * Tmeas = (Nmeas - n1) / slope + t1
|
|
|
- * milli_Tmeas = 1000 * (Nmeas - n1) / slope + 1000 * t1
|
|
|
- * milli_Tmeas = -1000 * (n1 - Nmeas) / slope + 1000 * t1
|
|
|
- * Let constant c1 = (-1000 / slope)
|
|
|
- * milli_Tmeas = (n1 - Nmeas) * c1 + 1000 * t1
|
|
|
- * Let constant c2 = n1 *c1 + 1000 * t1
|
|
|
- * milli_Tmeas = c2 - Nmeas * c1
|
|
|
+ * Tmeas = (Nmeas - n1) / slope + t1 + offset
|
|
|
+ * milli_Tmeas = 1000000 * (Nmeas - n1) / slope + 1000000 * t1 + OFFSET
|
|
|
+ * milli_Tmeas = -1000000 * (n1 - Nmeas) / slope + 1000000 * t1 + OFFSET
|
|
|
+ * Let constant c1 = (-1000000 / slope)
|
|
|
+ * milli_Tmeas = (n1 - Nmeas) * c1 + 1000000 * t1 + OFFSET
|
|
|
+ * Let constant c2 = n1 *c1 + 1000000 * t1
|
|
|
+ * milli_Tmeas = (c2 - Nmeas * c1) + OFFSET
|
|
|
+ * Tmeas = ((c2 - Nmeas * c1) + OFFSET) / 1000000
|
|
|
*/
|
|
|
temp64 = FACTOR0;
|
|
|
- temp64 *= 1000;
|
|
|
+ temp64 *= 1000000;
|
|
|
do_div(temp64, FACTOR1 * n1 - FACTOR2);
|
|
|
c1 = temp64;
|
|
|
- c2 = n1 * c1 + 1000 * t1;
|
|
|
+ c2 = n1 * c1 + 1000000 * t1;
|
|
|
|
|
|
/*
|
|
|
* now we only use single measure, every time we read
|
|
@@ -118,8 +122,8 @@ static int read_cpu_temperature(struct udevice *dev)
|
|
|
>> TEMPSENSE0_TEMP_CNT_SHIFT;
|
|
|
writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr);
|
|
|
|
|
|
- /* milli_Tmeas = c2 - Nmeas * c1 */
|
|
|
- temperature = (long)(c2 - n_meas * c1)/1000;
|
|
|
+ /* Tmeas = (c2 - Nmeas * c1 + OFFSET) / 1000000 */
|
|
|
+ temperature = lldiv(c2 - n_meas * c1 + OFFSET, 1000000);
|
|
|
|
|
|
/* power down anatop thermal sensor */
|
|
|
writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_set);
|