|
@@ -0,0 +1,268 @@
|
|
|
|
+Driver Model Compiled-in Device Tree / Platform Data
|
|
|
|
+====================================================
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Introduction
|
|
|
|
+------------
|
|
|
|
+
|
|
|
|
+Device tree is the standard configuration method in U-Boot. It is used to
|
|
|
|
+define what devices are in the system and provide configuration information
|
|
|
|
+to these devices.
|
|
|
|
+
|
|
|
|
+The overhead of adding device tree access to U-Boot is fairly modest,
|
|
|
|
+approximately 3KB on Thumb 2 (plus the size of the DT itself). This means
|
|
|
|
+that in most cases it is best to use device tree for configuration.
|
|
|
|
+
|
|
|
|
+However there are some very constrained environments where U-Boot needs to
|
|
|
|
+work. These include SPL with severe memory limitations. For example, some
|
|
|
|
+SoCs require a 16KB SPL image which must include a full MMC stack. In this
|
|
|
|
+case the overhead of device tree access may be too great.
|
|
|
|
+
|
|
|
|
+It is possible to create platform data manually by defining C structures
|
|
|
|
+for it, and referencing that data in a U_BOOT_DEVICE() declaration. This
|
|
|
|
+bypasses the use of device tree completely, but is an available option for
|
|
|
|
+SPL.
|
|
|
|
+
|
|
|
|
+As an alternative, a new 'of-platdata' feature is provided. This converts
|
|
|
|
+device tree contents into C code which can be compiled into the SPL binary.
|
|
|
|
+This saves the 3KB of code overhead and perhaps a few hundred more bytes due
|
|
|
|
+to more efficient storage of the data.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Caveats
|
|
|
|
+-------
|
|
|
|
+
|
|
|
|
+There are many problems with this features. It should only be used when
|
|
|
|
+stricly necessary. Notable problems include:
|
|
|
|
+
|
|
|
|
+ - Device tree does not describe data types but the C code must define a
|
|
|
|
+ type for each property. Thesee are guessed using heuristics which
|
|
|
|
+ are wrong in several fairly common cases. For example an 8-byte value
|
|
|
|
+ is considered to be a 2-item integer array, and is byte-swapped. A
|
|
|
|
+ boolean value that is not present means 'false', but cannot be
|
|
|
|
+ included in the structures since there is generally no mention of it
|
|
|
|
+ in the device tree file.
|
|
|
|
+
|
|
|
|
+ - Naming of nodes and properties is automatic. This means that they follow
|
|
|
|
+ the naming in the device tree, which may result in C identifiers that
|
|
|
|
+ look a bit strange
|
|
|
|
+
|
|
|
|
+ - It is not possible to find a value given a property name. Code must use
|
|
|
|
+ the associated C member variable directly in the code. This makes
|
|
|
|
+ the code less robust in the face of device-tree changes. It also
|
|
|
|
+ makes it very unlikely that your driver code will be useful for more
|
|
|
|
+ than one SoC. Even if the code is common, each SoC will end up with
|
|
|
|
+ a different C struct and format for the platform data.
|
|
|
|
+
|
|
|
|
+ - The platform data is provided to drivers as a C structure. The driver
|
|
|
|
+ must use the same structure to access the data. Since a driver
|
|
|
|
+ normally also supports device tree it must use #ifdef to separate
|
|
|
|
+ out this code, since the structures are only available in SPL.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+How it works
|
|
|
|
+------------
|
|
|
|
+
|
|
|
|
+The feature is enabled by CONFIG SPL_OF_PLATDATA. This is only available
|
|
|
|
+in SPL and should be tested with:
|
|
|
|
+
|
|
|
|
+ #if CONFIG_IS_ENABLED(SPL_OF_PLATDATA)
|
|
|
|
+
|
|
|
|
+A new tool called 'dtoc' converts a device tree file either into a set of
|
|
|
|
+struct declarations, one for each compatible node, or a set of
|
|
|
|
+U_BOOT_DEVICE() declarations along with the actual platform data for each
|
|
|
|
+device. As an example, consider this MMC node:
|
|
|
|
+
|
|
|
|
+ sdmmc: dwmmc@ff0c0000 {
|
|
|
|
+ compatible = "rockchip,rk3288-dw-mshc";
|
|
|
|
+ clock-freq-min-max = <400000 150000000>;
|
|
|
|
+ clocks = <&cru HCLK_SDMMC>, <&cru SCLK_SDMMC>,
|
|
|
|
+ <&cru SCLK_SDMMC_DRV>, <&cru SCLK_SDMMC_SAMPLE>;
|
|
|
|
+ clock-names = "biu", "ciu", "ciu_drv", "ciu_sample";
|
|
|
|
+ fifo-depth = <0x100>;
|
|
|
|
+ interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
|
|
|
|
+ reg = <0xff0c0000 0x4000>;
|
|
|
|
+ bus-width = <4>;
|
|
|
|
+ cap-mmc-highspeed;
|
|
|
|
+ cap-sd-highspeed;
|
|
|
|
+ card-detect-delay = <200>;
|
|
|
|
+ disable-wp;
|
|
|
|
+ num-slots = <1>;
|
|
|
|
+ pinctrl-names = "default";
|
|
|
|
+ pinctrl-0 = <&sdmmc_clk>, <&sdmmc_cmd>, <&sdmmc_cd>, <&sdmmc_bus4>;
|
|
|
|
+ vmmc-supply = <&vcc_sd>;
|
|
|
|
+ status = "okay";
|
|
|
|
+ u-boot,dm-pre-reloc;
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Some of these properties are dropped by U-Boot under control of the
|
|
|
|
+CONFIG_OF_SPL_REMOVE_PROPS option. The rest are processed. This will produce
|
|
|
|
+the following C struct declaration:
|
|
|
|
+
|
|
|
|
+struct dtd_rockchip_rk3288_dw_mshc {
|
|
|
|
+ fdt32_t bus_width;
|
|
|
|
+ bool cap_mmc_highspeed;
|
|
|
|
+ bool cap_sd_highspeed;
|
|
|
|
+ fdt32_t card_detect_delay;
|
|
|
|
+ fdt32_t clock_freq_min_max[2];
|
|
|
|
+ struct phandle_2_cell clocks[4];
|
|
|
|
+ bool disable_wp;
|
|
|
|
+ fdt32_t fifo_depth;
|
|
|
|
+ fdt32_t interrupts[3];
|
|
|
|
+ fdt32_t num_slots;
|
|
|
|
+ fdt32_t reg[2];
|
|
|
|
+ bool u_boot_dm_pre_reloc;
|
|
|
|
+ fdt32_t vmmc_supply;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+and the following device declaration:
|
|
|
|
+
|
|
|
|
+static struct dtd_rockchip_rk3288_dw_mshc dtv_dwmmc_at_ff0c0000 = {
|
|
|
|
+ .fifo_depth = 0x100,
|
|
|
|
+ .cap_sd_highspeed = true,
|
|
|
|
+ .interrupts = {0x0, 0x20, 0x4},
|
|
|
|
+ .clock_freq_min_max = {0x61a80, 0x8f0d180},
|
|
|
|
+ .vmmc_supply = 0xb,
|
|
|
|
+ .num_slots = 0x1,
|
|
|
|
+ .clocks = {{&dtv_clock_controller_at_ff760000, 456}, {&dtv_clock_controller_at_ff760000, 68}, {&dtv_clock_controller_at_ff760000, 114}, {&dtv_clock_controller_at_ff760000, 118}},
|
|
|
|
+ .cap_mmc_highspeed = true,
|
|
|
|
+ .disable_wp = true,
|
|
|
|
+ .bus_width = 0x4,
|
|
|
|
+ .u_boot_dm_pre_reloc = true,
|
|
|
|
+ .reg = {0xff0c0000, 0x4000},
|
|
|
|
+ .card_detect_delay = 0xc8,
|
|
|
|
+};
|
|
|
|
+U_BOOT_DEVICE(dwmmc_at_ff0c0000) = {
|
|
|
|
+ .name = "rockchip_rk3288_dw_mshc",
|
|
|
|
+ .platdata = &dtv_dwmmc_at_ff0c0000,
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+The device is then instantiated at run-time and the platform data can be
|
|
|
|
+accessed using:
|
|
|
|
+
|
|
|
|
+ struct udevice *dev;
|
|
|
|
+ struct dtd_rockchip_rk3288_dw_mshc *plat = dev_get_platdata(dev);
|
|
|
|
+
|
|
|
|
+This avoids the code overhead of converting the device tree data to
|
|
|
|
+platform data in the driver. The ofdata_to_platdata() method should
|
|
|
|
+therefore do nothing in such a driver.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+How to structure your driver
|
|
|
|
+----------------------------
|
|
|
|
+
|
|
|
|
+Drivers should always support device tree as an option. The of-platdata
|
|
|
|
+feature is intended as a add-on to existing drivers.
|
|
|
|
+
|
|
|
|
+Your driver should directly access the platdata struct in its probe()
|
|
|
|
+method. The existing device tree decoding logic should be kept in the
|
|
|
|
+ofdata_to_platdata() and wrapped with #ifdef.
|
|
|
|
+
|
|
|
|
+For example:
|
|
|
|
+
|
|
|
|
+ #include <dt-structs.h>
|
|
|
|
+
|
|
|
|
+ struct mmc_platdata {
|
|
|
|
+ #if CONFIG_IS_ENABLED(SPL_OF_PLATDATA)
|
|
|
|
+ /* Put this first */
|
|
|
|
+ struct dtd_mmc dtplat;
|
|
|
|
+ #endif
|
|
|
|
+ /*
|
|
|
|
+ * Other fields can go here, to be filled in by decoding from
|
|
|
|
+ * the device tree. They will point to random memory in the
|
|
|
|
+ * of-plat case.
|
|
|
|
+ */
|
|
|
|
+ int fifo_depth;
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ static int mmc_ofdata_to_platdata(struct udevice *dev)
|
|
|
|
+ {
|
|
|
|
+ #if !CONFIG_IS_ENABLED(SPL_OF_PLATDATA)
|
|
|
|
+ struct mmc_platdata *plat = dev_get_platdata(dev);
|
|
|
|
+ const void *blob = gd->fdt_blob;
|
|
|
|
+ int node = dev->of_offset;
|
|
|
|
+
|
|
|
|
+ plat->fifo_depth = fdtdec_get_int(blob, node, "fifo-depth", 0);
|
|
|
|
+ #endif
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ static int mmc_probe(struct udevice *dev)
|
|
|
|
+ {
|
|
|
|
+ struct mmc_platdata *plat = dev_get_platdata(dev);
|
|
|
|
+ #if CONFIG_IS_ENABLED(SPL_OF_PLATDATA)
|
|
|
|
+ struct dtd_mmc *dtplat = &plat->dtplat;
|
|
|
|
+
|
|
|
|
+ /* Set up the device from the dtplat data */
|
|
|
|
+ writel(dtplat->fifo_depth, ...)
|
|
|
|
+ #else
|
|
|
|
+ /* Set up the device from the plat data */
|
|
|
|
+ writel(plat->fifo_depth, ...)
|
|
|
|
+ #endif
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ static const struct udevice_id mmc_ids[] = {
|
|
|
|
+ { .compatible = "vendor,mmc" },
|
|
|
|
+ { }
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ U_BOOT_DRIVER(mmc_drv) = {
|
|
|
|
+ .name = "mmc",
|
|
|
|
+ .id = UCLASS_MMC,
|
|
|
|
+ .of_match = mmc_ids,
|
|
|
|
+ .ofdata_to_platdata = mmc_ofdata_to_platdata,
|
|
|
|
+ .probe = mmc_probe,
|
|
|
|
+ .priv_auto_alloc_size = sizeof(struct mmc_priv),
|
|
|
|
+ .platdata_auto_alloc_size = sizeof(struct mmc_platdata),
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+In the case where SPL_OF_PLATDATA is enabled, platdata_auto_alloc_size is
|
|
|
|
+ignored, and the platform data points to the C structure data. In the case
|
|
|
|
+where device tree is used, the platform data is allocated, and starts
|
|
|
|
+zeroed. In this case the ofdata_to_platdata() method should set up the
|
|
|
|
+platform data.
|
|
|
|
+
|
|
|
|
+SPL must use either of-platdata or device tree. Drivers cannot use both.
|
|
|
|
+The device tree becomes in accessible when CONFIG_SPL_OF_PLATDATA is enabled,
|
|
|
|
+since the device-tree access code is not compiled in.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Internals
|
|
|
|
+---------
|
|
|
|
+
|
|
|
|
+The dt-structs.h file includes the generated file
|
|
|
|
+(include/generated//dt-structs.h) if CONFIG_SPL_OF_PLATDATA is enabled.
|
|
|
|
+Otherwise (such as in U-Boot proper) these structs are not available. This
|
|
|
|
+prevents them being used inadvertently.
|
|
|
|
+
|
|
|
|
+The dt-platdata.c file contains the device declarations and is is built in
|
|
|
|
+spl/dt-platdata.c.
|
|
|
|
+
|
|
|
|
+Some phandles (thsoe that are recognised as such) are converted into
|
|
|
|
+points to platform data. This pointer can potentially be used to access the
|
|
|
|
+referenced device (by searching for the pointer value). This feature is not
|
|
|
|
+yet implemented, however.
|
|
|
|
+
|
|
|
|
+The beginnings of a libfdt Python module are provided. So far this only
|
|
|
|
+implements a subset of the features.
|
|
|
|
+
|
|
|
|
+The 'swig' tool is needed to build the libfdt Python module.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Future work
|
|
|
|
+-----------
|
|
|
|
+- Add unit tests
|
|
|
|
+- Add a sandbox_spl functional test
|
|
|
|
+- Consider programmatically reading binding files instead of device tree
|
|
|
|
+ contents
|
|
|
|
+- Drop the device tree data from the SPL image
|
|
|
|
+- Complete the phandle feature
|
|
|
|
+- Get this running on a Rockchip board
|
|
|
|
+- Move to using a full Python libfdt module
|
|
|
|
+
|
|
|
|
+--
|
|
|
|
+Simon Glass <sjg@chromium.org>
|
|
|
|
+6/6/16
|