|
@@ -6,6 +6,7 @@
|
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
|
*/
|
|
|
|
|
|
+#include <common.h>
|
|
|
#include <config.h>
|
|
|
#include <asm/io.h>
|
|
|
#include <asm/arch/clock.h>
|
|
@@ -16,7 +17,11 @@
|
|
|
#include "exynos5_setup.h"
|
|
|
#include "clock_init.h"
|
|
|
|
|
|
-#define TIMEOUT 10000
|
|
|
+#define TIMEOUT_US 10000
|
|
|
+#define NUM_BYTE_LANES 4
|
|
|
+#define DEFAULT_DQS 8
|
|
|
+#define DEFAULT_DQS_X4 (DEFAULT_DQS << 24) || (DEFAULT_DQS << 16) \
|
|
|
+ || (DEFAULT_DQS << 8) || (DEFAULT_DQS << 0)
|
|
|
|
|
|
#ifdef CONFIG_EXYNOS5250
|
|
|
static void reset_phy_ctrl(void)
|
|
@@ -28,8 +33,7 @@ static void reset_phy_ctrl(void)
|
|
|
writel(DDR3PHY_CTRL_PHY_RESET, &clk->lpddr3phy_ctrl);
|
|
|
}
|
|
|
|
|
|
-int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
- int reset)
|
|
|
+int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset)
|
|
|
{
|
|
|
unsigned int val;
|
|
|
struct exynos5_phy_control *phy0_ctrl, *phy1_ctrl;
|
|
@@ -177,7 +181,7 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
writel(val, &phy1_ctrl->phy_con1);
|
|
|
|
|
|
writel(CTRL_RDLVL_GATE_ENABLE, &dmc->rdlvl_config);
|
|
|
- i = TIMEOUT;
|
|
|
+ i = TIMEOUT_US;
|
|
|
while ((readl(&dmc->phystatus) &
|
|
|
(RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1)) !=
|
|
|
(RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1) && i > 0) {
|
|
@@ -221,8 +225,220 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_EXYNOS5420
|
|
|
-int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
- int reset)
|
|
|
+/**
|
|
|
+ * RAM address to use in the test.
|
|
|
+ *
|
|
|
+ * We'll use 4 words at this address and 4 at this address + 0x80 (Ares
|
|
|
+ * interleaves channels every 128 bytes). This will allow us to evaluate all of
|
|
|
+ * the chips in a 1 chip per channel (2GB) system and half the chips in a 2
|
|
|
+ * chip per channel (4GB) system. We can't test the 2nd chip since we need to
|
|
|
+ * do tests before the 2nd chip is enabled. Looking at the 2nd chip isn't
|
|
|
+ * critical because the 1st and 2nd chip have very similar timings (they'd
|
|
|
+ * better have similar timings, since there's only a single adjustment that is
|
|
|
+ * shared by both chips).
|
|
|
+ */
|
|
|
+const unsigned int test_addr = CONFIG_SYS_SDRAM_BASE;
|
|
|
+
|
|
|
+/* Test pattern with which RAM will be tested */
|
|
|
+static const unsigned int test_pattern[] = {
|
|
|
+ 0x5a5a5a5a,
|
|
|
+ 0xa5a5a5a5,
|
|
|
+ 0xf0f0f0f0,
|
|
|
+ 0x0f0f0f0f,
|
|
|
+};
|
|
|
+
|
|
|
+/**
|
|
|
+ * This function is a test vector for sw read leveling,
|
|
|
+ * it compares the read data with the written data.
|
|
|
+ *
|
|
|
+ * @param ch DMC channel number
|
|
|
+ * @param byte_lane which DQS byte offset,
|
|
|
+ * possible values are 0,1,2,3
|
|
|
+ * @return TRUE if memory was good, FALSE if not.
|
|
|
+ */
|
|
|
+static bool dmc_valid_window_test_vector(int ch, int byte_lane)
|
|
|
+{
|
|
|
+ unsigned int read_data;
|
|
|
+ unsigned int mask;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ mask = 0xFF << (8 * byte_lane);
|
|
|
+
|
|
|
+ for (i = 0; i < ARRAY_SIZE(test_pattern); i++) {
|
|
|
+ read_data = readl(test_addr + i * 4 + ch * 0x80);
|
|
|
+ if ((read_data & mask) != (test_pattern[i] & mask))
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * This function returns current read offset value.
|
|
|
+ *
|
|
|
+ * @param phy_ctrl pointer to the current phy controller
|
|
|
+ */
|
|
|
+static unsigned int dmc_get_read_offset_value(struct exynos5420_phy_control
|
|
|
+ *phy_ctrl)
|
|
|
+{
|
|
|
+ return readl(&phy_ctrl->phy_con4);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * This function performs resync, so that slave DLL is updated.
|
|
|
+ *
|
|
|
+ * @param phy_ctrl pointer to the current phy controller
|
|
|
+ */
|
|
|
+static void ddr_phy_set_do_resync(struct exynos5420_phy_control *phy_ctrl)
|
|
|
+{
|
|
|
+ setbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3);
|
|
|
+ clrbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * This function sets read offset value register with 'offset'.
|
|
|
+ *
|
|
|
+ * ...we also call call ddr_phy_set_do_resync().
|
|
|
+ *
|
|
|
+ * @param phy_ctrl pointer to the current phy controller
|
|
|
+ * @param offset offset to read DQS
|
|
|
+ */
|
|
|
+static void dmc_set_read_offset_value(struct exynos5420_phy_control *phy_ctrl,
|
|
|
+ unsigned int offset)
|
|
|
+{
|
|
|
+ writel(offset, &phy_ctrl->phy_con4);
|
|
|
+ ddr_phy_set_do_resync(phy_ctrl);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Convert a 2s complement byte to a byte with a sign bit.
|
|
|
+ *
|
|
|
+ * NOTE: you shouldn't use normal math on the number returned by this function.
|
|
|
+ * As an example, -10 = 0xf6. After this function -10 = 0x8a. If you wanted
|
|
|
+ * to do math and get the average of 10 and -10 (should be 0):
|
|
|
+ * 0x8a + 0xa = 0x94 (-108)
|
|
|
+ * 0x94 / 2 = 0xca (-54)
|
|
|
+ * ...and 0xca = sign bit plus 0x4a, or -74
|
|
|
+ *
|
|
|
+ * Also note that you lose the ability to represent -128 since there are two
|
|
|
+ * representations of 0.
|
|
|
+ *
|
|
|
+ * @param b The byte to convert in two's complement.
|
|
|
+ * @return The 7-bit value + sign bit.
|
|
|
+ */
|
|
|
+
|
|
|
+unsigned char make_signed_byte(signed char b)
|
|
|
+{
|
|
|
+ if (b < 0)
|
|
|
+ return 0x80 | -b;
|
|
|
+ else
|
|
|
+ return b;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Test various shifts starting at 'start' and going to 'end'.
|
|
|
+ *
|
|
|
+ * For each byte lane, we'll walk through shift starting at 'start' and going
|
|
|
+ * to 'end' (inclusive). When we are finally able to read the test pattern
|
|
|
+ * we'll store the value in the results array.
|
|
|
+ *
|
|
|
+ * @param phy_ctrl pointer to the current phy controller
|
|
|
+ * @param ch channel number
|
|
|
+ * @param start the start shift. -127 to 127
|
|
|
+ * @param end the end shift. -127 to 127
|
|
|
+ * @param results we'll store results for each byte lane.
|
|
|
+ */
|
|
|
+
|
|
|
+void test_shifts(struct exynos5420_phy_control *phy_ctrl, int ch,
|
|
|
+ int start, int end, int results[NUM_BYTE_LANES])
|
|
|
+{
|
|
|
+ int incr = (start < end) ? 1 : -1;
|
|
|
+ int byte_lane;
|
|
|
+
|
|
|
+ for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) {
|
|
|
+ int shift;
|
|
|
+
|
|
|
+ dmc_set_read_offset_value(phy_ctrl, DEFAULT_DQS_X4);
|
|
|
+ results[byte_lane] = DEFAULT_DQS;
|
|
|
+
|
|
|
+ for (shift = start; shift != (end + incr); shift += incr) {
|
|
|
+ unsigned int byte_offsetr;
|
|
|
+ unsigned int offsetr;
|
|
|
+
|
|
|
+ byte_offsetr = make_signed_byte(shift);
|
|
|
+
|
|
|
+ offsetr = dmc_get_read_offset_value(phy_ctrl);
|
|
|
+ offsetr &= ~(0xFF << (8 * byte_lane));
|
|
|
+ offsetr |= (byte_offsetr << (8 * byte_lane));
|
|
|
+ dmc_set_read_offset_value(phy_ctrl, offsetr);
|
|
|
+
|
|
|
+ if (dmc_valid_window_test_vector(ch, byte_lane)) {
|
|
|
+ results[byte_lane] = shift;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * This function performs SW read leveling to compensate DQ-DQS skew at
|
|
|
+ * receiver it first finds the optimal read offset value on each DQS
|
|
|
+ * then applies the value to PHY.
|
|
|
+ *
|
|
|
+ * Read offset value has its min margin and max margin. If read offset
|
|
|
+ * value exceeds its min or max margin, read data will have corruption.
|
|
|
+ * To avoid this we are doing sw read leveling.
|
|
|
+ *
|
|
|
+ * SW read leveling is:
|
|
|
+ * 1> Finding offset value's left_limit and right_limit
|
|
|
+ * 2> and calculate its center value
|
|
|
+ * 3> finally programs that center value to PHY
|
|
|
+ * 4> then PHY gets its optimal offset value.
|
|
|
+ *
|
|
|
+ * @param phy_ctrl pointer to the current phy controller
|
|
|
+ * @param ch channel number
|
|
|
+ * @param coarse_lock_val The coarse lock value read from PHY_CON13.
|
|
|
+ * (0 - 0x7f)
|
|
|
+ */
|
|
|
+static void software_find_read_offset(struct exynos5420_phy_control *phy_ctrl,
|
|
|
+ int ch, unsigned int coarse_lock_val)
|
|
|
+{
|
|
|
+ unsigned int offsetr_cent;
|
|
|
+ int byte_lane;
|
|
|
+ int left_limit;
|
|
|
+ int right_limit;
|
|
|
+ int left[NUM_BYTE_LANES];
|
|
|
+ int right[NUM_BYTE_LANES];
|
|
|
+ int i;
|
|
|
+
|
|
|
+ /* Fill the memory with test patterns */
|
|
|
+ for (i = 0; i < ARRAY_SIZE(test_pattern); i++)
|
|
|
+ writel(test_pattern[i], test_addr + i * 4 + ch * 0x80);
|
|
|
+
|
|
|
+ /* Figure out the limits we'll test with; keep -127 < limit < 127 */
|
|
|
+ left_limit = DEFAULT_DQS - coarse_lock_val;
|
|
|
+ right_limit = DEFAULT_DQS + coarse_lock_val;
|
|
|
+ if (right_limit > 127)
|
|
|
+ right_limit = 127;
|
|
|
+
|
|
|
+ /* Fill in the location where reads were OK from left and right */
|
|
|
+ test_shifts(phy_ctrl, ch, left_limit, right_limit, left);
|
|
|
+ test_shifts(phy_ctrl, ch, right_limit, left_limit, right);
|
|
|
+
|
|
|
+ /* Make a final value by taking the center between the left and right */
|
|
|
+ offsetr_cent = 0;
|
|
|
+ for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) {
|
|
|
+ int temp_center;
|
|
|
+ unsigned int vmwc;
|
|
|
+
|
|
|
+ temp_center = (left[byte_lane] + right[byte_lane]) / 2;
|
|
|
+ vmwc = make_signed_byte(temp_center);
|
|
|
+ offsetr_cent |= vmwc << (8 * byte_lane);
|
|
|
+ }
|
|
|
+ dmc_set_read_offset_value(phy_ctrl, offsetr_cent);
|
|
|
+}
|
|
|
+
|
|
|
+int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset)
|
|
|
{
|
|
|
struct exynos5420_clock *clk =
|
|
|
(struct exynos5420_clock *)samsung_get_base_clock();
|
|
@@ -231,7 +447,9 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
struct exynos5420_phy_control *phy0_ctrl, *phy1_ctrl;
|
|
|
struct exynos5420_dmc *drex0, *drex1;
|
|
|
struct exynos5420_tzasc *tzasc0, *tzasc1;
|
|
|
+ struct exynos5_power *pmu;
|
|
|
uint32_t val, n_lock_r, n_lock_w_phy0, n_lock_w_phy1;
|
|
|
+ uint32_t lock0_info, lock1_info;
|
|
|
int chip;
|
|
|
int i;
|
|
|
|
|
@@ -244,6 +462,7 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
tzasc0 = (struct exynos5420_tzasc *)samsung_get_base_dmc_tzasc();
|
|
|
tzasc1 = (struct exynos5420_tzasc *)(samsung_get_base_dmc_tzasc()
|
|
|
+ DMC_OFFSET);
|
|
|
+ pmu = (struct exynos5_power *)EXYNOS5420_POWER_BASE;
|
|
|
|
|
|
/* Enable PAUSE for DREX */
|
|
|
setbits_le32(&clk->pause, ENABLE_BIT);
|
|
@@ -394,7 +613,41 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
*/
|
|
|
dmc_config_mrs(mem, &drex0->directcmd);
|
|
|
dmc_config_mrs(mem, &drex1->directcmd);
|
|
|
- } else {
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Get PHY_CON13 from both phys. Gate CLKM around reading since
|
|
|
+ * PHY_CON13 is glitchy when CLKM is running. We're paranoid and
|
|
|
+ * wait until we get a "fine lock", though a coarse lock is probably
|
|
|
+ * OK (we only use the coarse numbers below). We try to gate the
|
|
|
+ * clock for as short a time as possible in case SDRAM is somehow
|
|
|
+ * sensitive. sdelay(10) in the loop is arbitrary to make sure
|
|
|
+ * there is some time for PHY_CON13 to get updated. In practice
|
|
|
+ * no delay appears to be needed.
|
|
|
+ */
|
|
|
+ val = readl(&clk->gate_bus_cdrex);
|
|
|
+ while (true) {
|
|
|
+ writel(val & ~0x1, &clk->gate_bus_cdrex);
|
|
|
+ lock0_info = readl(&phy0_ctrl->phy_con13);
|
|
|
+ writel(val, &clk->gate_bus_cdrex);
|
|
|
+
|
|
|
+ if ((lock0_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED)
|
|
|
+ break;
|
|
|
+
|
|
|
+ sdelay(10);
|
|
|
+ }
|
|
|
+ while (true) {
|
|
|
+ writel(val & ~0x2, &clk->gate_bus_cdrex);
|
|
|
+ lock1_info = readl(&phy1_ctrl->phy_con13);
|
|
|
+ writel(val, &clk->gate_bus_cdrex);
|
|
|
+
|
|
|
+ if ((lock1_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED)
|
|
|
+ break;
|
|
|
+
|
|
|
+ sdelay(10);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!reset) {
|
|
|
/*
|
|
|
* During Suspend-Resume & S/W-Reset, as soon as PMU releases
|
|
|
* pad retention, CKE goes high. This causes memory contents
|
|
@@ -445,15 +698,13 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
|
|
|
writel(val, &phy1_ctrl->phy_con1);
|
|
|
|
|
|
- n_lock_r = readl(&phy0_ctrl->phy_con13);
|
|
|
- n_lock_w_phy0 = (n_lock_r & CTRL_LOCK_COARSE_MASK) >> 2;
|
|
|
+ n_lock_w_phy0 = (lock0_info & CTRL_LOCK_COARSE_MASK) >> 2;
|
|
|
n_lock_r = readl(&phy0_ctrl->phy_con12);
|
|
|
n_lock_r &= ~CTRL_DLL_ON;
|
|
|
n_lock_r |= n_lock_w_phy0;
|
|
|
writel(n_lock_r, &phy0_ctrl->phy_con12);
|
|
|
|
|
|
- n_lock_r = readl(&phy1_ctrl->phy_con13);
|
|
|
- n_lock_w_phy1 = (n_lock_r & CTRL_LOCK_COARSE_MASK) >> 2;
|
|
|
+ n_lock_w_phy1 = (lock1_info & CTRL_LOCK_COARSE_MASK) >> 2;
|
|
|
n_lock_r = readl(&phy1_ctrl->phy_con12);
|
|
|
n_lock_r &= ~CTRL_DLL_ON;
|
|
|
n_lock_r |= n_lock_w_phy1;
|
|
@@ -482,7 +733,7 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
writel(val, &phy1_ctrl->phy_con1);
|
|
|
|
|
|
writel(CTRL_RDLVL_GATE_ENABLE, &drex0->rdlvl_config);
|
|
|
- i = TIMEOUT;
|
|
|
+ i = TIMEOUT_US;
|
|
|
while (((readl(&drex0->phystatus) & RDLVL_COMPLETE_CHO) !=
|
|
|
RDLVL_COMPLETE_CHO) && (i > 0)) {
|
|
|
/*
|
|
@@ -497,7 +748,7 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
writel(CTRL_RDLVL_GATE_DISABLE, &drex0->rdlvl_config);
|
|
|
|
|
|
writel(CTRL_RDLVL_GATE_ENABLE, &drex1->rdlvl_config);
|
|
|
- i = TIMEOUT;
|
|
|
+ i = TIMEOUT_US;
|
|
|
while (((readl(&drex1->phystatus) & RDLVL_COMPLETE_CHO) !=
|
|
|
RDLVL_COMPLETE_CHO) && (i > 0)) {
|
|
|
/*
|
|
@@ -522,77 +773,6 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
&drex1->directcmd);
|
|
|
}
|
|
|
|
|
|
- if (mem->read_leveling_enable) {
|
|
|
- /* Set Read DQ Calibration */
|
|
|
- val = (0x3 << DIRECT_CMD_BANK_SHIFT) | 0x4;
|
|
|
- for (chip = 0; chip < mem->chips_to_configure; chip++) {
|
|
|
- writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
|
|
|
- &drex0->directcmd);
|
|
|
- writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
|
|
|
- &drex1->directcmd);
|
|
|
- }
|
|
|
-
|
|
|
- val = readl(&phy0_ctrl->phy_con1);
|
|
|
- val |= READ_LEVELLING_DDR3;
|
|
|
- writel(val, &phy0_ctrl->phy_con1);
|
|
|
- val = readl(&phy1_ctrl->phy_con1);
|
|
|
- val |= READ_LEVELLING_DDR3;
|
|
|
- writel(val, &phy1_ctrl->phy_con1);
|
|
|
-
|
|
|
- val = readl(&phy0_ctrl->phy_con2);
|
|
|
- val |= (RDLVL_EN | RDLVL_INCR_ADJ);
|
|
|
- writel(val, &phy0_ctrl->phy_con2);
|
|
|
- val = readl(&phy1_ctrl->phy_con2);
|
|
|
- val |= (RDLVL_EN | RDLVL_INCR_ADJ);
|
|
|
- writel(val, &phy1_ctrl->phy_con2);
|
|
|
-
|
|
|
- setbits_le32(&drex0->rdlvl_config,
|
|
|
- CTRL_RDLVL_DATA_ENABLE);
|
|
|
- i = TIMEOUT;
|
|
|
- while (((readl(&drex0->phystatus) & RDLVL_COMPLETE_CHO)
|
|
|
- != RDLVL_COMPLETE_CHO) && (i > 0)) {
|
|
|
- /*
|
|
|
- * TODO(waihong): Comment on how long this take
|
|
|
- * to timeout
|
|
|
- */
|
|
|
- sdelay(100);
|
|
|
- i--;
|
|
|
- }
|
|
|
- if (!i)
|
|
|
- return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
|
|
|
-
|
|
|
- clrbits_le32(&drex0->rdlvl_config,
|
|
|
- CTRL_RDLVL_DATA_ENABLE);
|
|
|
- setbits_le32(&drex1->rdlvl_config,
|
|
|
- CTRL_RDLVL_DATA_ENABLE);
|
|
|
- i = TIMEOUT;
|
|
|
- while (((readl(&drex1->phystatus) & RDLVL_COMPLETE_CHO)
|
|
|
- != RDLVL_COMPLETE_CHO) && (i > 0)) {
|
|
|
- /*
|
|
|
- * TODO(waihong): Comment on how long this take
|
|
|
- * to timeout
|
|
|
- */
|
|
|
- sdelay(100);
|
|
|
- i--;
|
|
|
- }
|
|
|
- if (!i)
|
|
|
- return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
|
|
|
-
|
|
|
- clrbits_le32(&drex1->rdlvl_config,
|
|
|
- CTRL_RDLVL_DATA_ENABLE);
|
|
|
-
|
|
|
- val = (0x3 << DIRECT_CMD_BANK_SHIFT);
|
|
|
- for (chip = 0; chip < mem->chips_to_configure; chip++) {
|
|
|
- writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
|
|
|
- &drex0->directcmd);
|
|
|
- writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
|
|
|
- &drex1->directcmd);
|
|
|
- }
|
|
|
-
|
|
|
- update_reset_dll(&drex0->phycontrol0, DDR_MODE_DDR3);
|
|
|
- update_reset_dll(&drex1->phycontrol0, DDR_MODE_DDR3);
|
|
|
- }
|
|
|
-
|
|
|
/* Common Settings for Leveling */
|
|
|
val = PHY_CON12_RESET_VAL;
|
|
|
writel((val + n_lock_w_phy0), &phy0_ctrl->phy_con12);
|
|
@@ -602,6 +782,27 @@ int ddr3_mem_ctrl_init(struct mem_timings *mem, unsigned long mem_iv_size,
|
|
|
setbits_le32(&phy1_ctrl->phy_con2, DLL_DESKEW_EN);
|
|
|
}
|
|
|
|
|
|
+ /*
|
|
|
+ * Do software read leveling
|
|
|
+ *
|
|
|
+ * Do this before we turn on auto refresh since the auto refresh can
|
|
|
+ * be in conflict with the resync operation that's part of setting
|
|
|
+ * read leveling.
|
|
|
+ */
|
|
|
+ if (!reset) {
|
|
|
+ /* restore calibrated value after resume */
|
|
|
+ dmc_set_read_offset_value(phy0_ctrl, readl(&pmu->pmu_spare1));
|
|
|
+ dmc_set_read_offset_value(phy1_ctrl, readl(&pmu->pmu_spare2));
|
|
|
+ } else {
|
|
|
+ software_find_read_offset(phy0_ctrl, 0,
|
|
|
+ CTRL_LOCK_COARSE(lock0_info));
|
|
|
+ software_find_read_offset(phy1_ctrl, 1,
|
|
|
+ CTRL_LOCK_COARSE(lock1_info));
|
|
|
+ /* save calibrated value to restore after resume */
|
|
|
+ writel(dmc_get_read_offset_value(phy0_ctrl), &pmu->pmu_spare1);
|
|
|
+ writel(dmc_get_read_offset_value(phy1_ctrl), &pmu->pmu_spare2);
|
|
|
+ }
|
|
|
+
|
|
|
/* Send PALL command */
|
|
|
dmc_config_prech(mem, &drex0->directcmd);
|
|
|
dmc_config_prech(mem, &drex1->directcmd);
|